Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABN và ΔACM có
AB=AC
góc ABN=góc ACM
BN=CM
=>ΔABN=ΔACM
b: ΔABN=ΔACM
=>AM=AN
=>ΔAMN cân tại A
A B C M x N
a, \(\Delta\)MAB cân tại M nên ^BAM = ^ABM
\(\Delta\)ABC cận tại A nên ^ACB = ^ABM
=> ^BAM = ^ACM (1)
Có : ^ABN + ^BAM = 180^0 (vì Bx // AM) (2) =)) cặp góc trong cùng phía
Có : ^ACM = ^ACB = 180^0 (kề bù) (3)
Từ 1;2;3 => ^ABN = ^ACM
b, Xét \(\Delta\)ABN và \(\Delta\)ACM ta có
AB = AC (gt)
BN = CN (gt)
^ABN = ^ACM (cmt)
=> \(\Delta\)ABN = \(\Delta\)ACM (c.g.c)
=> AN = AM (tương ứng)
Vậy \(\Delta\)AMN cân tại A
Sorry bn mk chua hoc tg cân nên ko bt giai nhug hih mk bt ve
ko bt co dug o nhe!
sai đề rùi
cân tại A → AB=AC rùi còn j nữa
thấy đugs thì tick nha
Đáp án:
a) Xét ΔABN và ΔACM có:
+ AB = AC
+ góc ABN = góc ACM (do BN// AM)
+ BN = CM
=> ΔABN = ΔACM (c-g-c)
b) DO ΔABN = ΔACM
=> AN = AM
=> ΔAMN cân tại A