K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

xét tam giác ABC cân tại A có 

AD là phân giác 

=> AD là đg cao (tc tam giác cân )

=>AD⊥BC

=> AD⊥DC (D ∈ BC)=> AD⊥MD (M∈DC)

xét tam giác ADM có

MD = AD (gt)

AD⊥MD 

=> tam giác ADM vuông cân tại D

a) Xét ΔABD và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

hay \(\widehat{ADM}=90^0\)

Xét ΔADM có DA=DM(gt)

nên ΔADM cân tại D(Định nghĩa tam giác cân)

Xét ΔADM cân tại D có \(\widehat{ADM}=90^0\)(cmt)

nên ΔADM vuông cân tại D(Định nghĩa tam giác vuông cân)

27 tháng 1 2018

9 tháng 6 2021

Trả lời:

A B C D M N O

a, Tam giác ABC cân tại A có: AD là đường phân giác của ^BAC

=> AD đồng thời là đường trung trực của của tam giác ABC

=> AD \(\perp\)BC

=> tam giác DAM vuông tại D (đpcm)

b, Xét tam giác AMO có:

ON là đường cao thứ nhất ( ON \(\perp\)AM )

MD là đường cao thứ hai ( MD \(\perp\)AO )

Mà ON và BN cắt nhau tại B

=> B là trực tâm của tam giác AMO 

=> AB là đường cao thứ ba 

=> AB \(\perp\)OM   (đpcm)

c, Tam giác BCO có:

AD là đường trung trực hay OD là đường trung trực ứng với canh BC 

=> O cách đều 2 đầu mút B và C

=> OB = OC (đpcm)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a) Xét ΔAFC vuông tại F và ΔAFD vuông tại F có 

AC=AD(=AB)

AF chung

Do đó: ΔAFC=ΔAFD(Cạnh huyền-cạnh góc vuông)

Suy ra: FC=FD(hai cạnh tương ứng)

mà C,F,D thẳng hàng(gt)

nên F là trung điểm của CD

Xét ΔBCD có 

CA là đường trung tuyến ứng với cạnh BD(gt)

BF là đường trung tuyến ứng với cạnh DC(cmt)

CA cắt BF tại G(gt)

Do đó: G là trọng tâm của ΔBDC(Tính chất ba đường trung tuyến của tam giác)

\(\Leftrightarrow AG=\dfrac{1}{3}AC\)(Tính chất trọng tâm của tam giác)

mà \(AC=\dfrac{1}{2}BD\left(=AB\right)\)

nên \(AG=\dfrac{1}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{6}BD\)

hay BD=6AG(đpcm)

Đề sai rồi bạn

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

b: 

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>góc HBD=góc KCE

=>góc IBC=góc ICB

=>ΔIBC cân tại I

c: Xét ΔABI và ΔACI có

AI chung

AB=AC

BI=CI

=>ΔABI=ΔACI

=>góc BIA=góc CIA

=>IA là phân giác của góc BIC