Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nha
a)Vì tam giác ABC cân tại A
=> góc ABC=góc ACB
Xét tam giác ABH và tam giác ACH có
góc AHB= góc AHC(= 90 độ)
AB=AC(gỉa thiết)
góc ABC= góc ACB(chứng minh trên)
=> tam giác ABH = tam giác ACH(c/h-g/n) hoặc chứng minh theo trường hợp c/h-cgv cũng được
b)Xét tam giác ACH và tam giác DCH có
AH=DH(giả thiết)
góc AHC= góc DHC(= 90 độ)
cạnh HC chung
=>tam giác ACH = tam giác DCH(c.g.c)
=> AC=DC(2 cạnh tương ứng)
bạn tự vẽ hình nha
a) xét 2 tam giác BKA và CKD có:
BK=CK (K là TĐ của BC)
2 góc BKA=CKD (đối đỉnh)
KA=KD(gt)
=> 2 tam giác BKA=CKD(c.g.c)
=> góc ABK=góc DCK(2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB//CD
b) 2 tam giác ABK=DCK(theo a)
=> BA=CD(2 cạnh tương ứng)
ta có AB//CD
mà BA vuông góc với AC
=> DC vuông góc với AC
xét 2 tam giác ABH và CDH có:
góc BAH=góc DCH(=90độ)
BA=CD(chứng minh trên)
AH=CH(H là TĐ của AC)
=> 2 tam giác ABH=CDH(c.g.c)
c) 2 tam giác ABH=CDH(theo b)
=> 2 góc AHB=CHD(2 góc tương ứng)
xét 2 tam giác BAC và DCA có:
góc BAC=góc DCA(=90độ)
BA=DC(2 tam giác BKA=CKD)
cạnh AC chung
=> 2 tam giác BAC=DCA(c.g.c)
=> 2 góc BCA=DAC(2 góc tương ứng)
xét 2 tam giác AMH và CNH có:
góc MAH =góc NCH (chứng minh trên )
HA=HC (H là TĐ của AC)
góc AHB = góc CHD( chứng minh trên)
=> 2 tam giác AMH =CNH(g.c.g)
=> MH=NH(2 cạnh tương ứng)
=> tam giác MHN cân ở H
Bài làm thì dài lắm nên mik nói qua thôi
Bài 1
a) Vì AB=AC => tam giác ABC cân tại A
=>AH là đường trung tuyến ứng với BC mà trong tam giác cân đường trung tuyến cũng chính là đường phân giác và đường trung trực nên =>đpcm
b)Vì HK=HA ;BH=CH và AH vuông góc với BC nên ABKC là hình thoi(tứ giác có 2 đường chéo cắt nhau ở trung điểm mỗi đường và vuông góc với nhau)
=>AB song song với CK (tính chất 2 cạnh đối của hình thoi)
a) Xét hai tam giác vuông ABH và ACH ta có
AB = AC (gt)
\(\widehat{ABC}=\widehat{ACB}\)(gt)
Do đó: \(\Delta ABH=\Delta ACH\left(ch-gn\right)\)
b) Xét hai tam giác vuông AHB và DHC ta có
HA = HD (gt)
\(\widehat{AHB}=\widehat{CHD}\left(đđ\right)\)
Do đó: \(\Delta AHB=\Delta DHC\left(ch-gn\right)\)
=> AB = DC (căp cạnh tương ứng)
Mà AB = AC (gt) nên AC = DC
c) Ta có: \(\Delta AHB=\Delta DHC\)(câu a)
=> \(\widehat{BAG}=\widehat{GAC}\)(căp góc tương ứng)
Xét hai tam giác ABG và ACG ta có
AB = AC (gt)
\(\widehat{BAG}=\widehat{GAC}\left(cmt\right)\)
AG là cạnh chung
Do đó: \(\Delta ABG=\Delta ACG\left(c-g-c\right)\)
AE = AF (cặp cạnh tương ứng)
Ta có AE = \(\frac{1}{2}\)AB mà AB = AE và AE = AF
nên AF = \(\frac{1}{2}\)AC hay đường thẳng BG đi qua trung điểm F của AC
tk mk nhoa!!! ~3~