Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 góc đáy ABC = ACB = (180 - 108) : 2 = 36 ( gt)
Hạ đường cao AH; vì ABC là t.g cân tại A => AH là trung tuyến => HB = HC => BC = 2HC.
Trong \(\Delta\) vuông AHC có: HC/AC =cos36o
=>2HC/AC=cos36o
<=> BC/AC = 2cos36o
Tính được góc ABC = góc ACB = 36 độ
Kẻ CH vuông góc với AB
Có : sin HCB = HC/BC
=> HC/BC = sin 36 độ
=> BC = sin 36 độ . HC
Có : góc HAC = 180 độ - góc CAB = 180 độ - 108 độ = 72 độ
=> HC/AC = sin HAC = sin 72 độ
=> AC = sin 72 độ . HC
=> BC/AC = sin 36 độ . HC / sin 72 độ . HC = sin 36 độ / sin 72 độ xấp xỉ = 0,618
Tk mk nha
a) Xét tam giác BAD và CAD có:
AB=AC=14cm
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác)
AD cạnh chung
=> \(\Delta BAD=\Delta CAD\left(c.g.c\right)\)
=> BD=CD
Mà BD+CD=BC=12 cm
=> BD=DC=12:2=6(cm)
b) Vì AB=AC, BD=DC
=> AD là đường trung trực của BC
=> AD _|_ BC
=> \(S_{\Delta ABD}=\frac{1}{2}AD\cdot BD;S_{\Delta CAD}=\frac{1}{2}AD\cdot DC\)
\(\frac{S_{\Delta ABD}}{S_{\Delta CAD}}=\frac{AD\cdot BD}{AD\cdot DC}=\frac{AD}{DC}=1\)
Hình tự vẽ lấy nhé
a) Trong tam giác ABC, ta có: AD là đường phân giác của:
\(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)
Mà AB = 15cm và AC = 20cm ( gt )
Nên \(\frac{DB}{DC}=\frac{15}{20}\)
\(\Rightarrow\frac{DB}{DB+DC}=\frac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )
\(\Rightarrow\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}\left(cm\right)\)
b) Kẻ \(AH\perp BC\)
Ta có: \(S_{ABD}=\frac{1}{2}AH.BD\)
\(S_{ACD}=\frac{1}{2}AH.CD\)
\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.CD}=\frac{BD}{DC}\)
Mà \(\frac{DB}{DC}=\frac{15}{12}=\frac{3}{4}\)
\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{3}{4}\left(đpcm\right)\)
Xin phép ko vẽ hình nha.
Từ giả thiết suy ra 2 góc đáy ABC = ACB = (180 - 108) : 2 = 36o
Hạ đường cao AH; vì ABC là t.g cân tại A => AH là trung tuyến => HB = HC => BC = 2HC.
Trong t.g vuông AHC có: HC/AC =cos36o <=> 2HC/AC = 2cos36o <=> BC/AC = 2cos36o
lớp 8 mik chưa học cos gì gì đó mà bạn
p