K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

Vẽ IH vuông góc AB, IK vuông góc AC, IE vuông góc BC (bạn đặt tên khác cũng được nhưng kẻo nhầm lẫn)

Xét 2 tam giác vuông  BIH và BIE có:

BI chung

Góc HBI = góc EBI (BI là phân giác góc B)

=> Tam giác BIH = tam giác BIE (cạnh huyền - góc nhọn)

=> IH = IE (2 cạnh tương ứng) (1)

Xét 2 tam giác vuông KCI và ECI có:

IC chung

Góc KCI = góc ECI (IC là phân giác góc C)

=> Tam giác KCI = tam giác ECI (cạnh huyền - góc nhọn)

=>IK = IE (2 cạnh tương ứng) (2)

Từ (1),(2) => IH = IK (= IE)

Xét 2 tam giác vuông AIH và AIK có:

AI chung

IH = IK (cmt)

=> Tam giác AIH = tam giác AIK (cạnh huyền - cạnh góc vuông)

=> Góc HAI = góc KAI (2 góc tương ứng)

=> AI là tia phân giác góc A

 

7 tháng 2 2016

moi hok lop 6 thoi 

5 tháng 1 2018

1.Vì các tia phân giác của các góc B và C cắt nhau tại I

\(\Rightarrow\)I là giao của các đường phân giác trong tam giác

\(\Rightarrow\)AI là tia phân giác của góc A

20 tháng 6 2019

1.

Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)

\(\widehat{IDB}=\widehat{IEB}=90^0\)

\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)

BI cạnh huyền chung

⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\widehat{IEC}=\widehat{IFC}=90^0\)

\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

         \(\widehat{IDA}=\widehat{IFA}=90^0\)

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)

Vậy AI là tia phân giác của \(\widehat{A}\)

21 tháng 5 2017

A B C D E I F

Kẻ ID \(\perp\) AB, IE \(\perp\) BC, IF \(\perp\) AC

Xét hai tam giác vuông IBD và IBE có:

IB: cạnh chung

\(\widehat{DBI}=\widehat{EBI}\) (gt)

Vậy: \(\Delta IBD=\Delta IBE\left(ch-gn\right)\)

\(\Rightarrow\) ID = IE (hai cạnh tương ứng) (1)

Xét hai tam giác vuông ICF và ICE có:

IC: cạnh chung

\(\widehat{FCI}=\widehat{ECI}\) (gt)

Vậy: \(\Delta ICF=\Delta ICE\left(ch-gn\right)\)

\(\Rightarrow\) IF = IE (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông AID và AIF có:

AI: cạnh chung

ID = IF (cmt)

Vậy: \(\Delta AID=\Delta AIF\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAD}=\widehat{IAF}\) (hai góc tương ứng)

Do đó: AI là tia phân giác của \(\widehat{A}\).

31 tháng 5 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ: ID⊥AB, IE⊥BC, IF⊥AC

Xét hai tam giác vuông ΔIBD và ΔIEB, ta có:

∠(DBI) =∠(EBI) (gt)

∠(IDB) =∠(IEB) =90o

BI cạnh chung

Suy ra: ΔIDB= ΔIEB(cạnh huyền, góc nhọn)

Suy ra: ID = IE ( hai cạnh tương ứng)

Xét hai tam giác vuông ΔIEC và ΔIFC, ta có:

∠(ECI) =∠(FCI)

∠(IEC) =∠(IFC) =90o

CI cạnh huyền chung

Suy ra: ΔIEC= ΔIFC(cạnh huyền góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông ΔIDA và ΔIFA, ta có:

ID=IF

∠(IDA) =∠(IFA) =90o

AI cạnh huyền chung

Suy ra: ΔIDA= ΔIFA(cạnh huyền.cạnh góc vuông)

Suy ra: ∠(DAI) =∠(FAI) (hai góc tương ứng)

Vậy AI là tia phân giác góc A

4 tháng 1 2016

là sao bạn

 

4 tháng 1 2016

4578

Mấy đại ca làm ơn tick giúp em 8 cái tick em đang rất cần

4 tháng 1 2016

5342

tick cho tui lên 120 nha

1. Cho tam giác ABC vuông tại A có góc C=30° tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC ( H thuộc BC )a. So sánh các cạnh của tam giác ABCb. Chứng minh tam giác ABE = tam giác HBEc. Chứng minh tam giác EAH cân d. Từ H kẻ HK song song với BE ( K thuộc AC ). Chứng minh: AE = EK = KC  2. Cho tam giác cân ABC ( AB = AC ). Trên tia đối của các tia BA và Ca lấy hai điểm D và E sao cho BD = CEa. Chứng minh DE // BCb....
Đọc tiếp

1. Cho tam giác ABC vuông tại A có góc C=30° tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC ( H thuộc BC )

a. So sánh các cạnh của tam giác ABC

b. Chứng minh tam giác ABE = tam giác HBE

c. Chứng minh tam giác EAH cân 

d. Từ H kẻ HK song song với BE ( K thuộc AC ). Chứng minh: AE = EK = KC

 

 

2. Cho tam giác cân ABC ( AB = AC ). Trên tia đối của các tia BA và Ca lấy hai điểm D và E sao cho BD = CE

a. Chứng minh DE // BC

b. Từ D kẻ DM vuông góc với BC, từ E kẻ EN vuông góc với BC. Chứng minh DM = EN.

c. Chứng minh tam giác AMN là tam giác cân.

d. Từ B và C kẻ các đường vuông góc với AM và AN chúng cắt nhau tại i. Chứng minh Ai là tia phân giác chung của hai góc BAC và góc MAN. 

Ai giúp mình với 2 câu luôn nha. Mình ngu hình học lắm. Cho mình xin thêm hình nữa nha. Cảm ơn nhiều.

0
16 tháng 2 2017

A B C I M N P

Gọi M,N,P lần lượt là hình chiếu của I lên các cạnh BC,BA,CA

Xét \(\Delta\)BIN và \(\Delta\)BIM có
\(\widehat{IBN}=\widehat{IBM}\)(BI là phân giác)

BI chung

=> \(\Delta\)BIN = \(\Delta\)BIM (cạnh huyền-góc nhọn)

=> IM=IN

CM tương tự có: \(\Delta\)CIP=\(\Delta\)CIM => IM=IP

=> IM=IN=IP

Xét \(\Delta\)AIN và \(\Delta\)AIP vuông tại N và P có:

IA chung

IN=IM

=>  \(\Delta\)AIN = \(\Delta\)AIP (cạnh huyền -cạnh góc vuông)

=> \(\widehat{IAN}=\widehat{IAP}\)=> IA là phân giác góc A (DPCM)