Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có ED là đường tb của △ABC
=> ED//BC; ED=1/2BC
có MN là đường tb của △BCG
=> MN//BC ; MN = 1/2 BC
=> EDNM là hbh
để EDNM là hình thoi thì hbh EDNM phải có hai đường chéo vuông góc
=> MD⊥EN
=> BD⊥CE
Vậy để EDNM là hình thoi thì △ABC phải có 2 đường trung tuyến vuông góc
A B C D E G M N
BD, CE là đường trung tuyến tam giác ABC
=> AE = BE; AD = CD
=> ED là đường trung tuyến tam giác ABC
=> ED // BC; ED = 1/2 BC (1)
M là trung điểm BG => MG = MB
N là trung điểm CG => NG = NC
suy ra: MN là đường trung bình tam giác GBC
=> MN // BC; MN = 1/2 BC (2)
Từ (1) và (2) => MN // ED ; MN = ED
suy ra: tứ giác MNDE là hình bình hành
=> đpcm
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
DO dó: ED là đường trung bình
=>ED//BC và ED=BC/2
Xét ΔGBC có
M,N lần lượt là trug điểm của GB và GC
nênMN là đường trung bình
=>MN//BC và MN=BC/2
Xét ΔGMN có
I là trung điểm của GM
K là trung điểm của GN
Do đó: IK là đường trung bình
=>IK//MN và IK=MN/2
=>IK//ED và IK=BC/4
Xét tứ giác IKDE có DE//IK
nên IKDE là hình thang
Xét ΔACE và ΔABD có
AC=AB
góc A chung
AE=AD
Do đó: ΔACE=ΔABD
Suy ra: CE=BD
Xét ΔEBC và ΔDCB có
EB=DC
EC=BD
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: góc GBC=góc GCB
hay ΔGBC cân tại G
=>GB=GC
=>GD=GE
GI=1/4GB
GK=1/4GC
mà GB=GC
nên GI=GK
=>ID=EK
=>EDKI là hình thang cân
b: DE=BC/2=5cm
IK=1/4BC=2,5cm
=>DE+IK=7,5cm
Xét tam giác BGC có : \(BM=MG\)
Có : \(CN=NG\left(gt\right)\)
\(\Rightarrow MN\) là đường trung bình tam giác \(BGC\)
\(\Rightarrow MN//BC\) và \(MN=\frac{1}{2}BC\left(1\right)\)
Xét tam giác \(ABC\) có : \(AD=DC\) ( \(BD\) là đường trung tuyến )
\(AE=EB\) ( \(CE\) là đường trung tuyến )
\(\Rightarrow ED\) là đường trung bình tam giác \(ABC\)
\(\Rightarrow ED//BC\) và \(ED=\frac{1}{2}BC\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow ED//MN\) và \(ED=MN\)
Xét tam giác \(BGA\) có : \(BM=MG\) và \(BE=EA\)
\(\Rightarrow ME\) là đường trung bình tam giác \(BGA\)
\(\Rightarrow ME//GA\) và \(ME=\frac{1}{2}GA\left(3\right)\)
Xét tam giác \(CGA\) có : \(CN=NG\) và \(CD=DA\)
\(\Rightarrow DN\) là đường trung bình của tam giác \(CGA\)
\(\Rightarrow DN//GA\) và \(DN=\frac{1}{2}GA\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow ME//DN\) và \(ME=DN\)
Vậy tứ giác \(MNDE\) có các cặp cạnh đối song song và bằng nhau.
Bài giải
a)
Ta có GM = BM, GN = CN (gt)
⇒ MN // BC (T/C đtb ΔGBC)
Tương tự, ED // BC (ED là đtb ΔABC)
⇒ MN // ED
Lại có IK // MN ( IK là đtb ΔGMN )
Nên IK // ED
Nên IEDK là hình thang (1)
Có ΔAED cân tại A (AE = AD)
⇒\(\widehat{AED}=\widehat{ADE}\)
Lại có \(\widehat{BEC}=\widehat{CDB}\) ( ΔBEC=ΔCDB:c-g-c )
⇒180o -( \(\widehat{ADE}+\widehat{BEC}\) )=180o - ( \(\widehat{ADE}+\widehat{CDB}\) )
Hay \(\widehat{IED}=\widehat{KDE}\)(2)
Từ (1) và (2), suy ra IEDK là hình thang cân
b) DE = \(\frac{1}{2}\) BC ( đg thẳng nối trung điểm 2 cạnh tam giác bằng \(\frac{1}{2}\) cạnh còn lại)
MN = \(\frac{1}{2}\) BC ( như trên)
IK = \(\frac{1}{2}\) MN = \(\frac{1}{4}\)BC (nt)
DE + IK = \(\frac{1}{2}\)BC +\(\frac{1}{4}\) BC = 5 + 2,5 = 7,5 cm
Đáp án:
Hình bạn tự vẽ nha!
Giải thích các bước giải:
, Xét tam giác ABC có AE=EB(gt), AD=DC(gt)
=> ED là đường trung bình của tam giác ABC
=> ED//BC và ED = 1/2BC
Xét tam giác BGC có BM=MG(gt), CN=NG(gt)
=> MN là đường trung bình của tam giác BGC
=> MN // BC và MN=1/2BC
Có MN//BC mà ED//BC => MN//ED
MN=1/2BC, ED=1/2BC=> MN=ED
Tứ giác MNDE có: MN//ED,MN=ED
=> MNDE là hình bình hành