Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AE/AB=AD/AC
nên ED//BC và ED/BC=1/2(1)
Xét ΔGBC có GH/GB=GK/GC
nên HK//BC và HK/BC=1/2(2)
Từ (1) và (2) suy ra ED//HK và ED=HK
=>DEHK là hình bình hành
b: Xét ΔBED có HP//ED
nên HP/ED=1/2(3)
Xét ΔCED có KQ//ED
nên KQ/ED=1/2(4)
Từ (3) và (4) suy ra HP=KQ
A B C D E M N I K
Xét tam giác ABC có E là trung điểm của AB, D là trung điểm của AC => DE là đường trung bình của tam giác ABC => DE//BC và \(DE=\dfrac{1}{2}BC\)=> tứ giác BEDC là hình thang
Xét hình thang BEDC có M là trung điểm của BE, M là trung điểm của CD => MN là đường trung bình của hình thang BEDC => DE//MN; BC//MN
Xét tam giác BED có M là t/điểm của BE và MI//DE (do DE//MN) => I là t/điểm của BD => Mi là đường t/bình của tam giác BED => \(MI=\dfrac{1}{2}DE\)
Xét tam giác CDE có N là t/điểm của CD và NK//DE (do MN//DE) => K là t/điểm của CE => KN là đường t/bình của tam giác CDE => \(KN=\dfrac{1}{2}DE\)
Ta có: \(MN=\dfrac{DE+BC}{2}\) (do MN là đường t/bình của hình thang BEDC)
=> 2.MN=DE+BC => 2(IM+IK+KN)=2.IM+2.2IM => 2.(2.IM+IK)=5.IM
=> 4.IM+IK=5.IM => IK=IM => IM=IK=KN => đpcm
**** trước đi rồi mình giải tận tình cho