Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
Áp dụng định lý đường phân giác trong tam giác, ta được:
\(\frac{AB}{AD}=\frac{BC}{DC}\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{2}{3}\Rightarrow\frac{AB}{2}=\frac{BC}{3}\)(1)
Lại ap dụng định lý đường phân giác trong tam giác, ta được:
\(\frac{AC}{AE}=\frac{BC}{EB}\Rightarrow\frac{AC}{BC}=\frac{AE}{EB}=\frac{5}{6}\Rightarrow\frac{AC}{5}=\frac{BC}{6}\)(2)
Từ (1) và (2) suy ra \(\frac{AB}{4}=\frac{AC}{5}=\frac{BC}{6}=\frac{45}{15}=3\)
Vậy độ dài các cạnh của tam giác ABC lần lượt là 12;15;18 (cm)
Hình bạn tự vẽ nhé
Xét tam giác ABC có CE là đường phân giác của góc ACB (gt)
\(\Rightarrow\frac{AE}{EB}=\frac{AC}{BC}\)( tính chất đường phân giác trong của tam giác )
\(\Rightarrow\frac{AC}{BC}=\frac{5}{6}\)( Vì\(\frac{AE}{EB}=\frac{5}{6}\))
\(\Rightarrow6AC=5BC\)
Xét tam giác ABC có đường phân giác BD của góc ABC(gt)
\(\Rightarrow\frac{AD}{DC}=\frac{AB}{BC}\)( tích chất của đường phân giác trong của tam giác )
\(\Rightarrow\frac{AB}{BC}=\frac{2}{3}\)( Vì \(\frac{AD}{DC}=\frac{2}{3}\))
\(\Rightarrow3AB=2BC\)
Theo bài ra ta có: \(\hept{\begin{cases}6AC=5BC\\3AB=2BC\end{cases}}\)và \(AB+BC+CA=45\)
\(\Rightarrow\hept{\begin{cases}\frac{AC}{5}=\frac{BC}{6}\\\frac{AB}{4}=\frac{BC}{6}\end{cases}}\)
\(\Rightarrow\frac{AB}{4}=\frac{AC}{5}=\frac{BC}{6}=\frac{AB+AC+BC}{4+5+6}=\frac{45}{15}=3\)
\(\Rightarrow\hept{\begin{cases}AB=3.4=12\left(cm\right)\\AC=3.5=15\left(cm\right)\\BC=3.6=18\left(cm\right)\end{cases}}\)
Vậy ...
Áp dụng tính chất của các đường phân giác BD và CE của tam giác ABC ta được:
+ AB/BC = AD/DC = 2/3 = 4/6
với t > 0
+
Theo giả thiết ta có: P A B C = A B + A C + B C = 15 t = 45 ⇒ t = 3
Vậy AB = 12( cm ); BC = 18( cm ); AC = 15( cm )
Áp dụng tính chất của các đường phân giác BD và CE của tam giác ABC ta được:
với t > 0
Theo giả thiết ta có: PABC = AB + AC + BC = 15t = 45 ⇒ t = 3
Vậy AB = 12( cm ); BC = 18( cm ); AC = 15( cm )
Áp dụng tính chất của các đường phân giác BD và CE của tam giác ABC ta được:
với t > 0
Theo giả thiết ta có: PABC = AB + AC + BC = 15t = 45 ⇒ t = 3
Vậy AB = 12( cm ); BC = 18( cm ); AC = 15( cm )
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
Bài 1:
Gọi chiều dài là x,gọi chiều rộng là y
Vì chiều rộng kém chiều dài 20cm ta có: x-20=y hay x-y=20 (1)
Vì chu vi hình chữ nhật là 72, ta có: (x+y).2=72 => x+y=36 (2)
Từ (1)(2) ta có:\(\begin{cases}x-y=20\\x+y=36\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\20+y+y=36\end{cases}\)
\(\Leftrightarrow\begin{cases}x=20+y\\2y=16\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\y=8\end{cases}\) \(\Leftrightarrow\begin{cases}x=28\\y=8\end{cases}\)
Diện tịhs hình chữ nhật là: x.y=28.8=224
Bài 2
Xét ΔHAB và ΔACB có:
\(\widehat{AHB}=\widehat{BAC}=90\)
\(\widehat{B}\) : góc chung
=>ΔHAB~ΔACB(g.g)
b) Xét ΔABC vuông tại A(gt)
=>\(BC^2=AB^2+AC^2\) (theo định lý pytago)
=>\(BC^2=12^2+16^2=400\)
=>BC=20cm
Vì ΔHAB~ΔACB(cmt)
=>\(\frac{AH}{AC}=\frac{AB}{BC}\)
=>\(AH=\frac{AB\cdot AC}{BC}=\frac{12\cdot16}{20}=9,6cm\)
Ta có: CE là đường phân giác ứng với cạnh AB(gt)
⇒\(\frac{AE}{EB}=\frac{AC}{BC}\)(tính chất đường phân giác của tam giác)
hay \(\frac{AC}{BC}=\frac{2}{3}\)(1)
Ta có: BD là đường phân giác ứng với cạnh AC(gt)
⇒\(\frac{AD}{DC}=\frac{AB}{BC}\)(tính chất đường phân giác của tam giác)
hay \(\frac{AB}{BC}=\frac{2}{3}\)(2)
Từ (1) và (2) suy ra \(\frac{AC}{BC}=\frac{AB}{BC}\)
hay AC=AB
Ta có: \(\frac{AB}{BC}=\frac{2}{3}\)
⇒\(AB=\frac{2\cdot BC}{3}\)
Ta có: Chu vi của tam giác ABC bằng 45cm
⇒AB+AC+BC=45cm
hay 2AB+BC=45cm
⇒\(2\cdot\frac{2\cdot BC}{3}+BC=45cm\)
⇔\(\frac{4}{3}\cdot BC+BC=45cm\)
⇒\(BC\cdot\left(\frac{4}{3}+1\right)=45cm\)
⇒\(BC\cdot\frac{7}{3}=45cm\)
hay \(BC=\frac{45}{\frac{7}{3}}=45\cdot\frac{3}{7}=\frac{135}{7}cm\)
Ta có: 2AB+BC=45cm(cmt)
⇒\(2\cdot AB=45-\frac{135}{7}=\frac{180}{7}cm\)
hay \(AB=AC=\frac{90}{7}cm\)
Vậy: ...