K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2019

a) \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\Rightarrow2\overrightarrow{IA}-\overrightarrow{IA}-\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}=\overrightarrow{0}\)

\(\Rightarrow2\overrightarrow{AI}=\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow\overrightarrow{AB}+2\overrightarrow{AI}=\overrightarrow{AC}\). Từ đó suy ra cách dựng điểm I:

A B C I

b) Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:

\(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}+2\overrightarrow{IA}-\overrightarrow{MI}-\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}\)

\(=2\overrightarrow{MI}+\left(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}\right)=2\overrightarrow{MI}\)

Suy ra I là trung điểm MN hay MN đi qua điểm I cố định (đpcm).

c) \(\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MB}+\frac{1}{2}\overrightarrow{MN}=\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MC}\)

Đặt K là điểm sao cho \(\overrightarrow{KA}+\frac{1}{2}\overrightarrow{KC}=\overrightarrow{0}\Rightarrow\hept{\begin{cases}K\in\left[AC\right]\\KA=\frac{1}{2}KC\end{cases}}\)tức K xác định

Khi đó \(\overrightarrow{MP}=\overrightarrow{MK}+\overrightarrow{KA}+\frac{1}{2}\overrightarrow{MK}+\frac{1}{2}\overrightarrow{KC}=\frac{3}{2}\overrightarrow{MK}\), suy ra MP đi qua K cố định (đpcm).

1. Cho tam giác ABC a. Dựng điểm R sao cho vecto AR​​= 1/3 vecto AB + 1/3 vecto AC b. Gọi M là trung điểm cạnh AC. Cmr A,B,M thẳng hàng 2. Cho hình bình hành ABCD và 2 điểm E,F thoả mãn vecto DF= vecto CE = 1/3DC Gọi I là giao điểm của AF và DB, J là giao điểm của AE và BC a. Tính vecto AE theo vecto AJ b. Cmr tứ giác ABEF là hình bình hành c. Tính vecto DF theo vecto DE và tính vecto DI theo vecto DB. Cmr IJ // DC 3. Cho tam...
Đọc tiếp

1. Cho tam giác ABC

a. Dựng điểm R sao cho vecto AR​​= 1/3 vecto AB + 1/3 vecto AC

b. Gọi M là trung điểm cạnh AC. Cmr A,B,M thẳng hàng

2. Cho hình bình hành ABCD và 2 điểm E,F thoả mãn vecto DF= vecto CE = 1/3DC

Gọi I là giao điểm của AF và DB, J là giao điểm của AE và BC

a. Tính vecto AE theo vecto AJ

b. Cmr tứ giác ABEF là hình bình hành

c. Tính vecto DF theo vecto DE và tính vecto DI theo vecto DB. Cmr IJ // DC

3. Cho tam giác ABC và I,J là 2 điểm thoả mãn các hệ thức vecto

2IA +3IB -IC=0

2JA +3JB=0

a. -Biểu diễn vecto AI theo vecto AB và vecto AC

-Biểu diễn vecto CJ theo vecto CA và vecto CB

b. P,Q theo 2 điểm thoả mãn hệ thức vecto PQ= 2vecto PA+ 3 vecto PB - vecto PC

Cmr P,Q,I thẳng hàng

c. Gọi M là trung điểm của CQ. CM là đường thẳng PM đi qua J

4. Cho 2 điểm A,B cố định.Tìm Tập hợp điểm M ( quỹ tích M) trong mặt phẳng thoả mãn hệ thức

|MA+MB|=|MA-MB|

Cảm ơn đã giải giúp em ạ

0
27 tháng 12 2023

a)  Gọi E là trung điểm AB \(\Rightarrow\) \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IE}\)

 \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)

\(2\overrightarrow{IE}+3\overrightarrow{IC}=\overrightarrow{0}\)

A B C E I M d

b) \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\)

\(=\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|\)

\(=5MI\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|min\Leftrightarrow MImin\)

                                           \(\Leftrightarrow\) M là hình chiếu của I trên d

AH
Akai Haruma
Giáo viên
10 tháng 11 2020

Lời giải:

$M$ là trung điểm $BC$ nên $\overrightarrow{BM}, \overrightarrow{CM}$ là 2 vector đối nhau.

$I$ là trung điểm $AM$ nên $-\overrightarrow{IA}=\overrightarrow{IM}$

Từ đây ta có:

$-2\overrightarrow{IA}=2\overrightarrow{IM}=(\overrightarrow{IB}+\overrightarrow{BM})+(\overrightarrow{IC}+\overrightarrow{CM})=\overrightarrow{IB}+\overrightarrow{IC}+(\overrightarrow{BM}+\overrightarrow{CM})$

$=\overrightarrow{IB}+\overrightarrow{IC}$

$\Rightarrow 2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}$

(đpcm)

AH
Akai Haruma
Giáo viên
10 tháng 11 2020

Hình vẽ:

Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO