Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao chứng minh được \(\Delta ABC\)cân tại \(A\) khi đề bài cho \(AB=20\)và \(AC=48\)
\(\Delta\)cân là 2 cạnh bên của nó phải bằng nhau
đọc đề mình đã thấy nó không hợp lí rồi Nguyễn Hải Văn
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)
Bài 1:
Xét tam giác vuông ABD tại D. Theo định lý Pi-ta-go, ta có:
BD2+AD2=AB2
=>225+AD2=289(cm)
=>AD2=64(cm)
=>AD=8(cm)
Suy ra CD=AC-AD=17-8=9(cm)
Lại xét tam giác BCD vuông tại D. Theo định lý Pi-ta-go ta có:
BD2+CD2=BC2
=>225+81=BC2(cm)
=>BC2=306(cm)
=>BC=\(\sqrt{306}\left(cm\right)\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(BK=\sqrt{AB^2-AH^2}=9\left(cm\right)\)
CK=BC-BK=16(cm)
Có 15^2+8^2=289
17^2=289
Vậy tam giác abc có ab^2+ac^2=bc^2 thì tam giác abc vg tại a
Có AH^2+HC^2=225
AH^2+HB^2=64
Trừ 2 cái cho nhau thì (HC-HB)(HC+HB)=225-64=161
Mà HC+HB=BC=17 tự tính nốt
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE và AD=AE
d: Xét ΔABC có
AD/AB=AE/AC
nên DE//BC
a) tam giác ABC có BC^2=52^2=2704
mà AB^2+AC^2=20^2+48^2=2704
=> BC^2=AB^2+AC^2
=> tam giác ABC vuông tại A
b) tam giác ABC vuông tại A=> AH.BC=AB.AC
=> AH.52=20.48
=> AH.52=960
=> AH=240/13cm