Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp
Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
c.
\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)
\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{x+3y-1}=X\\\frac{1}{2x-y+3}=Y\end{matrix}\right.\)
Hệ phương trình trở thành:
\(\left\{{}\begin{matrix}2X-Y=5\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4X-2Y=10\\X+2Y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5X=15\\X+2Y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}X=3\\Y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x+3y-1}=3\\\frac{1}{2x-y+3}=1\end{matrix}\right.\) (nhân chéo) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=\frac{1}{3}\\2x-y+3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\2x-y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\6x-3y=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\frac{4}{3}\\7x=-\frac{14}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{2}{3}\\y=\frac{2}{3}\end{matrix}\right.\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(-\frac{2}{3};\frac{2}{3}\right)\)
Đáp án C
Gọi (d) là đường thẳng cần tìm. Do d song song với AC nên d nhận A C → ( 2 ; - 3 ) làm VTCP.
Suy ra n → ( 3 ; 2 ) là VTPT của (d) .
Do đó; đường thẳng ( d) có phương trình:
3( x- 0) +2( y-4) = 0 hay 3x+ 2y- 8=0
Gọi giao điểm của d và AB là D
\(\Rightarrow S_{ACD}=2S_{BCD}\)
\(\Rightarrow AD=2BD\Rightarrow\overrightarrow{AD}=\dfrac{2}{3}\overrightarrow{AB}\)
Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;-5\right)\\\overrightarrow{AD}=\left(x-1;y-4\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{4}{3}\\y-4=-\dfrac{10}{3}\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{7}{3};\dfrac{2}{3}\right)\) \(\Rightarrow\overrightarrow{DC}=\left(\dfrac{11}{3};-\dfrac{8}{3}\right)=\dfrac{1}{3}\left(11;-8\right)\)
Đường thẳng d nhận \(\left(8;11\right)\) là 1 vtpt
Phương trình d:
\(8\left(x-6\right)+11\left(y+2\right)=0\Leftrightarrow8x+11y-26=0\)
Gọi G là trọng tâm tam giác \(\Rightarrow G\left(\dfrac{10}{3};\dfrac{1}{3}\right)\)
Đường thẳng song song trục hoành nên nhận \(\left(0;1\right)\) là 1 vecto pháp tuyến
Phương trình:
\(0\left(x-\dfrac{10}{3}\right)+1\left(y-\dfrac{1}{3}\right)=0\Leftrightarrow y-\dfrac{1}{3}=0\)