K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a)  Phương trình đường thẳng AB đi qua 2 điểm A và B là: \(\frac{{x - 1}}{{ - 1 - 1}} = \frac{{y - 3}}{{ - 1 - 3}} \Leftrightarrow \frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 4}} \Leftrightarrow 2x - y + 1 = 0\)

 Phương trình đường thẳng AC đi qua 2 điểm A và C là: \(\frac{{x - 1}}{{5 - 1}} = \frac{{y - 3}}{{ - 3 - 3}} \Leftrightarrow \frac{{x - 1}}{4} = \frac{{y - 3}}{{ - 6}} \Leftrightarrow 3x + 2y - 9 = 0\)

 Phương trình đường thẳng BC đi qua 2 điểm B và C là:

\(\frac{{x + 1}}{{5 + 1}} = \frac{{y + 1}}{{ - 3 + 1}} \Leftrightarrow \frac{{x + 1}}{6} = \frac{{y + 1}}{{ - 2}} \Leftrightarrow x + 3y + 4 = 0\)

b)  Gọi d là đường trung trực của cạnh AB.

 Lấy N là trung điểm của AB, suy ra \(N\left( {0;1} \right)\).

 Do \(d \bot AB\) nên ta có vecto pháp tuyến của d là: \(\overrightarrow {{n_d}}  = \left( {1;2} \right)\)

 Vậy phương trình đường thẳng d đi qua N có vecto pháp tuyến \(\overrightarrow {{n_d}}  = \left( {1;2} \right)\) là:

\(1\left( {x - 0} \right) + 2\left( {y - 1} \right) = 0 \Leftrightarrow x + 2y - 2 = 0\)

c)  Do AH vuông góc với BC nên vecto pháp tuyến của AH là \(\overrightarrow {{n_{AH}}}  = \left( {3; - 1} \right)\)

 Vậy phương trình đường cao AH đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AH}}}  = \left( {3; - 1} \right)\)là: \(3\left( {x - 1} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow 3x - y = 0\)

 Do M là trung điểm BC nên \(M\left( {2; - 2} \right)\). Vậy ta có: \(\overrightarrow {AM}  = \left( {1; - 5} \right) \Rightarrow \overrightarrow {{n_{AM}}}  = \left( {5;1} \right)\)

 Phương trình đường trung tuyến AM đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AM}}}  = \left( {5;1} \right)\) là:

\(5\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 5x + y - 8 = 0\)

9 tháng 3 2018

Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10

+ Lập phương trình đường thẳng AB:

Đường thẳng AB nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp ⇒ AB nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà A(1; 4) thuộc AB

⇒ PT đường thẳng AB: 5(x- 1) + 2(y – 4) = 0 hay 5x + 2y – 13 = 0.

+ Lập phương trình đường thẳng BC:

Đường thẳng BC nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp ⇒ BC nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà B(3; –1) thuộc BC

⇒ Phương trình đường thẳng BC: 1(x - 3) – 1(y + 1) = 0 hay x – y – 4 = 0.

+ Lập phương trình đường thẳng CA:

Đường thẳng CA nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp ⇒ CA nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà C(6; 2) thuộc CA

⇒ Phương trình đường thẳng AC: 2(x – 6) + 5(y - 2) = 0 hay 2x + 5y – 22 = 0.

b) + AH là đường cao của tam giác ABC ⇒ AH ⊥ BC

⇒ Đường thẳng AH nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vec tơ pháp tuyến

Mà A(1; 4) thuộc AH

⇒ Phương trình đường thẳng AH: 1(x - 1) + 1(y - 4) = 0 hay x + y – 5 = 0.

+ Trung điểm M của BC có tọa độ Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 hay Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10

Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10

Đường thẳng AM nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp

⇒ AM nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà A(1; 4) thuộc AM

⇒ Phương trình đường thẳng AM: 1(x - 1) + 1(y – 4) = 0 hay x + y – 5 = 0.

30 tháng 3 2017

a) Ta có = (2; -5). Gọi M(x; y) là 1 điểm nằm trên đường thẳng AB thì AM = (x - 1; y - 4). Ba điểm A, B, M thẳng hàng nên hai vec tơ cùng phương, cho ta:

= <=> 5x + 2y -13 = 0

Đó chính là phương trình đường thẳng AB.

Tương tự ta có phương trình đường thẳng BC: x - y -4 = 0

phương trình đường thẳng CA: 2x + 5y -22 = 0

b) Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.

= (3; 3) => nên nhận vectơ = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:

AH : 3(x - 1) + 3(y -4) = 0

3x + 3y - 15 = 0

=> x + y - 5 = 0

Gọi M là trung điểm BC ta có M \(\left(\dfrac{9}{2};\dfrac{1}{2}\right)\)

Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:

AM : x + y - 5 = 0

10 tháng 6 2017

mạnh nhể, làm cả toán 10

10 tháng 4 2020
AB:2x-5y+18=0 AC:5x-2y+3=0 BC:x+y-2=0 AH:x-y+3=0 AM:x+y-5=0
16 tháng 5 2020

Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.

 = (3; 3)  =>   ⊥  nên  nhận vectơ    = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:

AH : 3(x – 1) + 3(y -4) = 0

3x + 3y – 15 = 0

=> x + y – 5 = 0

Gọi M là trung điểm BC ta có M ()

Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:

AM : x + y – 5 = 0

a: vecto AB=(1;-1)

=>VTPT là (1;1)

Phương trình AB là:

1(x-0)+1(y-3)=0

=>x+y-3=0

vecto AC=(-3;2)

=>VTPT là (2;3)

Phương trình AC là:

2(x-0)+3(y-3)=0

=>2x+3y-9=0

vecto BC=(-4;3)

=>VTPT là (3;4)

Phương trình BC là;

3(x-1)+4(y-2)=0

=>3x-3+4y-8=0

=>3x+4y-11=0

vecto BC=(-4;3)

=>AH có VTPT là (-4;3)

Phương trình AH là;

-4(x-0)+3(y-3)=0

=>-4x+3y-9=0

b: vecto AC=(-3;2)

=>BK có VTPT là (-3;2)

Phương trình BK là:

-3(x-1)+2(y-2)=0

=>-3x+3+2y-4=0

=>-3x+2y-1=0

Tọa độ K là:

-3x+2y-1=0 và -4x+3y-9=0

=>K(15;23)

d: vecto AB=(1;-1)

=>Đường trung trực của AB có VTPT là (1;-1)

Tọa độ N là trung điểm của AB là:

x=(0+1)/2=1/2 và y=(2+3)/2=2,5

Phương trình đường trung trực của AB là:

1(x-0,5)+(-1)(y-2,5)=0

=>x-y+2=0

 

a: vecto AB=(1;-1); vecto AC=(2;1); vecto BC=(1;2)

AB có VTPT là (1;1)

Phương trình AB là;

1(x-1)+1(y+1)=0

=>x+y=0

AC có VTPT là (-1;2)

PT AC là:

-1(x-1)+2(y+1)=0

=>-x+1+2y+2=0

=>-x+2y+3=0

BC có VTPT là (-2;1)

PT BC là;

-2(x-2)+1(y+2)=0

=>-2x+y+6=0

b: AH có VTPT là (1;2)

Phương trình AH là:

1(x-1)+2(y+1)=0

=>x-1+2y+2=0

=>x+2y+1=0