K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

góc A - góc B = góc B - góc C

=> góc A + góc C = 2 . góc B

Ta có: góc A + góc B + góc C = 180 độ

=> 2 . góc B + góc B = 180 độ

=> 3 . góc B = 180 độ

=> góc B = 60 độ

Mà góc A - góc B = góc B - góc C = 10 đọ

=> góc A = 70 độ; góc C = 50 độ

8 tháng 4 2018

Xét tam giác ABC ta có 

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180\sigma\)

=> \(\widehat{ACB}=70\sigma\)

=> \(\widehat{BAD}=\widehat{CAD}\)= 37,5 độ

\(\widehat{BAE}\)=  37,5 độ + 90 độ = 127,5 độ

=> góc AEB = 180 độ - ( 35 độ + 127,5 độ )

=> góc AEB = 17,5 độ

+tam giác DAE vuông tại A có đường trung tuyến AM

=> AM = 1/2 DE => AM = ME = MD

+ AM = ME => tam giác AME cân tại M

=> góc AEM = góc EAM = 17,5 độ

+ góc AMC = góc AEM + góc EAM ( tính chất góc ngoài )

=> góc AMC = 17,5 độ + 17,5 độ =  35 độ

\(\widehat{ACB}=\widehat{AMC}+\widehat{CAM}\)=> góc CAM = góc ACB - góc AMC = 35 độ

=> \(\widehat{AMC}=\widehat{CAM}\)

=> tam giác ACM cân tại C ( đpcm )

c) Tam giác ACM cân tại C => AC = CM

góc ABC = góc AMC => tam giác ABM cân tại A

=> AB = AM => AB = ME ( AM = ME )

+ Chu vi tam giác ABC = AB + AC + BC 

= ME + MC + BC = BE 

=> chu vi tam giác ABC bằng độ dài đoạn BE

24 tháng 5 2022

a.Áp dụng định lý pitago vào tam giác ABC vuông tại A, có:

\(BC^2=AB^2+AC^2\)

\(BC^2=4^2+3^2\)

\(BC^2=25\)

\(BC=\sqrt{25}=5\left(cm\right)\)

b.Ta có: \(BC>AB>AC\)

             \(\Rightarrow\widehat{A}>\widehat{C}>\widehat{B}\)

24 tháng 5 2022

a) ...pitago vào tam giác abc vuông tại a 

bc^2= ac^2+ab^2

bc^2= 25

bc=5cm

8 tháng 4 2021

OwO.Thiệt ra iem mới lớp 5 hà ==

24 tháng 7 2019

Từ đề bài ta suy ra ^ABD = 36o (Dễ dàng chứng minh). Từ đây suy ra tam giác ADB cân tại D. Do đó AD = DB.

Sai thì thôi!

23 tháng 11 2024

SSiuuuuuuuuuuuu

24 tháng 10 2019

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=\widehat{C}+10^o+\widehat{C}-10^o+\widehat{C}=3\widehat{C}=180^o\)

\(\Rightarrow\widehat{C}=60^o\)\(\Rightarrow\widehat{A}=70^o\)\(\widehat{B}=50^o\)

18 tháng 9 2019

Bài 1:

  B D A H C E

Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)

Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)

Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)

\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)

Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).

Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)

Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).

2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)

Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)

Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)

Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)

P/S : Hình bài 1 chỉ mang tính chất minh họa nhé

19 tháng 9 2019

Theo yêu cầu vẽ hình của bạn Hyouka :)

2. 

B A C H D TH: ^B > ^C        B A C H D TH: ^B < ^C