Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC ta có
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180\sigma\)
=> \(\widehat{ACB}=70\sigma\)
=> \(\widehat{BAD}=\widehat{CAD}\)= 37,5 độ
+ \(\widehat{BAE}\)= 37,5 độ + 90 độ = 127,5 độ
=> góc AEB = 180 độ - ( 35 độ + 127,5 độ )
=> góc AEB = 17,5 độ
+tam giác DAE vuông tại A có đường trung tuyến AM
=> AM = 1/2 DE => AM = ME = MD
+ AM = ME => tam giác AME cân tại M
=> góc AEM = góc EAM = 17,5 độ
+ góc AMC = góc AEM + góc EAM ( tính chất góc ngoài )
=> góc AMC = 17,5 độ + 17,5 độ = 35 độ
+ \(\widehat{ACB}=\widehat{AMC}+\widehat{CAM}\)=> góc CAM = góc ACB - góc AMC = 35 độ
=> \(\widehat{AMC}=\widehat{CAM}\)
=> tam giác ACM cân tại C ( đpcm )
c) Tam giác ACM cân tại C => AC = CM
góc ABC = góc AMC => tam giác ABM cân tại A
=> AB = AM => AB = ME ( AM = ME )
+ Chu vi tam giác ABC = AB + AC + BC
= ME + MC + BC = BE
=> chu vi tam giác ABC bằng độ dài đoạn BE
a.Áp dụng định lý pitago vào tam giác ABC vuông tại A, có:
\(BC^2=AB^2+AC^2\)
\(BC^2=4^2+3^2\)
\(BC^2=25\)
\(BC=\sqrt{25}=5\left(cm\right)\)
b.Ta có: \(BC>AB>AC\)
\(\Rightarrow\widehat{A}>\widehat{C}>\widehat{B}\)
a) ...pitago vào tam giác abc vuông tại a
bc^2= ac^2+ab^2
bc^2= 25
bc=5cm
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=\widehat{C}+10^o+\widehat{C}-10^o+\widehat{C}=3\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=60^o\)\(\Rightarrow\widehat{A}=70^o\); \(\widehat{B}=50^o\)
Bài 1:
B D A H C E
Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)
Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)
Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)
\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)
Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).
Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)
Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).
2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)
Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)
Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)
Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)
P/S : Hình bài 1 chỉ mang tính chất minh họa nhé
Theo yêu cầu vẽ hình của bạn Hyouka :)
2.
: B A C H D TH: ^B > ^C B A C H D TH: ^B < ^C
góc A - góc B = góc B - góc C
=> góc A + góc C = 2 . góc B
Ta có: góc A + góc B + góc C = 180 độ
=> 2 . góc B + góc B = 180 độ
=> 3 . góc B = 180 độ
=> góc B = 60 độ
Mà góc A - góc B = góc B - góc C = 10 đọ
=> góc A = 70 độ; góc C = 50 độ