K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2022

góc b lớn nhất

vì góc lớn nhất đối diện với cạnh lớn nhất

16 tháng 3 2022

số đo góc lớn nhất là góc B

vì \(AB< BC< AC\\ \Rightarrow C< A< B\\ \Rightarrow gócBlàgóclớnnhất\)

a,A+B+C=180 độ \(\Rightarrow C=30\)độ

\(\Rightarrow A>B>C\Rightarrow AB< AC< BC\)(t/c............)

b, t/gBAD=t/gBKD(c-g-c) suy ra DA=DK

c,BDC cân vì có DBC=DCB=30 độ 

d, théo t/c của tam giác vuông (cạnh đối diện vs góc 30 độ =1/2 cạnh huyền)

30 tháng 6 2021

thế kb=kc cm kiểu j vaayj bn

 

4 tháng 4 2018

bạn tự vẽ hình

a, ta có AB^2+AC^2=3^2+4^2=9+16=25

            BC^2=5^2=25

do đó tam giác ABC vuông tại A ( theo pitago)

b,Xét tam giác ADB và tam giác EDB có góc A=góc E ( cùng bằng 90 độ)

                                                            BD chung

                                                             góc ABD=góc EBD ( BD là pg của góc B)

do đó tam giác ADB=tam giác EDB ( cạnh huyền góc nhọn)

=> DA=DE(2 cạnh tương ứng)

c,tự cm

4 tháng 4 2018

bạn ơi mk ko biết làm phần c

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

20 tháng 9 2020

                                                                  B A D E C

a) Xét \(\Delta ABC\)vuông tại A có :

\(BC^2=AB^2+AC^2\)( ĐL Py - ta - go )

\(BC^2=4^2+3^2\)

\(BC^2=16+9\)

\(BC^2=25\)

\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)

Vậy BC = 5cm

b) Xét \(\Delta BAE\)và \(\Delta DAE\)có :

                \(BA=AD\left(gt\right)\)

                \(\widehat{BAE}=\widehat{DAE}\left(=90^o\right)\)

                 AE chung

\(\Delta BAE=\Delta DAE\left(c.g.c\right)\)

\(\Rightarrow BE=DE\)( 2 cạnh tương ứng )

và \(\widehat{BEA}=\widehat{DEA}\)( 2 góc tương ứng )

mà \(\widehat{BEA}+\widehat{BEC}=180^o\)( kề bù )

     \(\widehat{DEA}+\widehat{DEC}=180^o\)( kề bù )

\(\Rightarrow\widehat{BEC}=\widehat{DEC}\)

Xét \(\Delta BEC\)và \(\Delta DEC\)có :

                \(BE=ED\left(cmt\right)\)

            \(\widehat{BEC}=\widehat{DEC}\left(cmt\right)\)

                 EC chung

\(\Rightarrow\Delta BEC=\Delta DEC\left(c.g.c\right)\)

a: Xét ΔABC có AB<AC<BC

mà \(\widehat{C};\widehat{B};\widehat{A}\) lần lượt là góc đối diện của các cạnh AB,AC,BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Vì \(\widehat{C}< \widehat{B}< \widehat{A}\)

nên \(\widehat{A}\) là góc lớn nhất trong ΔABC