K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

Xét tam giác BDC có:

H là trung điểm BC (gt)

N là trung điểm BD(gt)

=> NH là đường trung bình của tam giác BDC

=> NH//DC

Mà \(M\in DC\)

=> NH//DM

Xét tam giác ANH có:

NH//DM(cmt)

Mà M là trung điểm AH(gt)

=> D là trung điểm AN

=> ND=AD

Mà ND = NB( N là trung điểm BD)

=> ND=AD=NB

=> \(AD=\dfrac{1}{3}AB\)

a: Xét ΔBDC có 

H là trung điểm của BC

N là trung điểm của BD

Do đó: HN là đường trung bình của ΔBDC

Suy ra: HN//DC

hay DM//NH

Xét ΔANH có 

M là trung điểm của AH

MD//NH

Do đó: D là trung điểm của AN

Suy ra: DA=DN

hay \(AD=\dfrac{1}{3}AB\)

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:A, IP/OA=IB/OBB,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:

A, IP/OA=IB/OB

B, IP/IS=IB/ID*OD/OB

C, IP/IS=IQ/IR

3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

1

Câu 3: 

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

a: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh đáy BC

nên H là trung điểm của CB

Xét ΔBDC có

H là trung điểm của BC

N là trung điểm của BD

Do đó: HN là đường trung bình của ΔBDC

Suy ra: HN//DC và \(HN=\dfrac{DC}{2}\)

b: Xét ΔANH có

M là trung điểm của AH

MD//NH

Do đó: D là trung điểm của AN

Suy ra: AD=DN

mà DN=NB

nên AD=DN=NB

Suy ra: \(AD=\dfrac{AD+DN+NB}{3}=\dfrac{AB}{3}\)

4 tháng 7 2021

a,

\(\Delta ABC\) cân tại A có AH là đường cao nên đồng thời là trung trực

\(=>BH=HC\)

mà N là trung điểm BD\(=>BN=ND\)

=>\(HN\) là đường trung bình \(\Delta BCD\)\(=>HN//DC\)

b,từ ý a \(=>DM//HN\) mà M là trung điểm AH

=>AD=DN

mà DN=BN=>AD=DN=BN

mà AD+DN+BN=AB\(=>AD=\dfrac{1}{3}AB\)

Từ H, kẻ đường thẳng song song với DC cắt AB tại I

Xét ΔBDC có 

H là trung điểm của BC(gt)

HI//CD(gt)

Do đó: I là trung điểm của BD(Định lí 1 về đường trung bình của tam giác)

Xét ΔAHI có 

M là trung điểm của AH(gt)

MD//IH(gt)

Do đó: D là trung điểm của AI(Định lí 1 về đường trung bình của tam giác)

Ta có: D là trung điểm của AI(cmt)

nên AD=DI

Ta có: I là trung điểm của BD(cmt)

nên ID=BI

Ta có: AD+DI+BI=AB

nên 3AD=AB

hay \(AD=\dfrac{1}{3}AB\)

Ta có: AD+BD=AB(D nằm giữa A và B)

nên \(BD=AB-AD=AB-\dfrac{1}{3}AB=\dfrac{2}{3}AB\)

Ta có: \(\dfrac{BD}{AD}=\dfrac{2\cdot AB}{3}:\dfrac{1\cdot AB}{3}\)

\(\Leftrightarrow\dfrac{BD}{AD}=\dfrac{2\cdot AB}{AB}=2\)

nên BD=2AD

Gọi K là trung điểm của BD

Xét ΔBDC có 

K là trung điểm của BD

H là trung điểm của BC

Do đó: KH là đường trung bình của ΔBDC

Suy ra: KH//DC 

hay KH//DM

Xét ΔAKH có 

M là trung điểm của AH

MD//KH

Do đó: D là trung điểm của AK

Suy ra: AD=DK

mà DK=KB

nên AD=DK=KB

\(\Leftrightarrow AD=\dfrac{DK+KB}{2}=\dfrac{BD}{2}\)

hay BD=2AD