Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M a) Xét tam giác BAM và tam giác CAM có : BA = CA (GT) Góc BAM=góc CAM ( vì : AM là tia phân giác của góc BAC ) AM là cạnh chung Do đó: tam giác BAM = tam giác CAM(c.g.c) b) vì tam giác BAM = tam giác CAM (câu a) => góc AMB = góc AMC ( hai góc tương ứng) Mà : hai góc đó là hai góc kề bù Nên: Góc AMB=góc CAM = 90 độ => AM vuông góc với BC. D C) Xét tam giác BAD và tam giác CAD có: AB=AC( GT) BD=CD(GT) AD là cạnh chung =>Do đó :tam giác BAD=tam giác CAD(c.c.c) => AD là tia phân giác của góc A ( vì góc BAD=góc CAD) Nên: ba điểm A,D,M thẳng hàng => AM là đường trung trực của BC => AD cũng là đường trung trực của BC
a: Xét ΔAMB và ΔAMD có
AM chung
MB=MD
AB=AD
Do đó: ΔAMB=ΔAMD
b: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
c: Xét ΔKBE và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKBE=ΔKDC
Suy ra: \(\widehat{BKE}=\widehat{DKC}\)
=>\(\widehat{BKE}+\widehat{BKD}=180^0\)
hay E,K,D thẳng hàng
1:Xét ΔADK và ΔACK có
AD=AC
góc DAK=góc CAK
AK chung
Do đó: ΔADK=ΔACK
=>DK=CK
2: ΔADC cân tại A
mà AM là phân giác
nên AM vuông góc với DC
mà BH vuông góc với DC
nên AM//BH
a) Xét \(\Delta BAM\)và \(\Delta DAM\):
\(DA=BA\)
\(\widehat{BAM}=\widehat{DAM}\)
\(AM\)chung
\(\Rightarrow\Delta BAM=\Delta DAM\left(c.g.c\right)\)
\(\Rightarrow BM=DM\)(hai cạnh tương ứng)
b) \(\Delta BAM=\Delta DAM\Rightarrow\widehat{ABM}=\widehat{ADM}\)(hai góc tương ứng)
Xét \(\Delta BAC\)và \(\Delta DAK\):
\(BA=DA\)
\(\widehat{A}\)chung
\(\widehat{ABM}=\widehat{ADM}\)
\(\Rightarrow\Delta BAC=\Delta DAK\left(g.c.g\right)\)
c) \(\Delta BAC=\Delta DAK\Rightarrow AC=AK\)(hai cạnh tương ứng)
\(\Rightarrow\Delta AKC\)cân tại \(A\).
d) \(\Delta ABC\)có phân giác \(AM\)nên \(\frac{BM}{AB}=\frac{CM}{AC}\)mà \(AB< AC\Rightarrow BM< CM\).
a: Xét ΔADK và ΔACK có
AD=AC
góc DAK=góc CAK
AK chung
=>ΔADK=ΔACK
=>DK=CK
b: ΔADC cân tại A
mà AM là phân giác
nên AM vuông góc DC
=>AM//HB
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
nên \(\widehat{ABD}=\widehat{AMD}\)
c: Xét ΔAID vuông tại I và ΔAKD vuông tại K có
AD chung
\(\widehat{IAD}=\widehat{KAD}\)
Do đó: ΔAID=ΔAKD
Suy ra: AI=AK
=>BI=KM
A D B C K M ( (
△ABC : AB < AC. D AB : AD = AC. DAM = MAC = BAC /2. M DC
BC ∩ AM = {K}
DK = CK
Cách 1:
Xét △DAM và △CAM
Có: AD = AC (gt)
DAM = CAM (gt)
AM là cạnh chung
=> △DAM = △CAM (c.g.c)
=> MD = CM (2 cạnh tương ứng)
và AMD = AMC (2 góc tương ứng)
Mà AMD + AMC = 180o (2 góc kề bù)
=> AMD = AMC = 180o/2 = 90o
Xét △DMK vuông tại M và △CMK vuông tại M
Có: KM là cạnh chung
DM = CM (cmt)
=> △DMK = △CMK (2 cgv)
=> DK = CK (2 cạnh tương ứng)
Cách 2:
Xét △DAK và △CAK
Có: AD = AC (gt)
DAK = CAK (gt)
AK là cạnh chung
=> DAK = CAK (c.g.c)
=> DK = CK (2 cạnh tương ứng)