K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

Ta có hình vẽ:

a/ Xét tam giác ABE và tam giác ADE có

AE: cạnh chung

AB = AD (GT)

góc BAE = góc DAE (GT)

Vậy tam giác ABE = tam giác ADE (c.g.c)

b/ Giao điểm của BD và AE là H (Đã vẽ trên hình)

a: Xét ΔABE và ΔADE có 

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

Hai câu còn lại sai đề rồi bạn

7 tháng 12 2016

?????????????????????????????????????????????????????

27 tháng 2 2020

a, xét tam giác ABC và tam giác DBE có : góc B chung

AB = BD (Gt)

góc BAC = góc BDE = 90

=> tam giác ABC = tam giác DBE (cgv-gnk)

b, xét tam giác ABH và tam giác DBH có : BH chung

AB = BD (Gt)

góc HAB = góc HDB = 90 

=> tam giác ABH = tam giác DBH (ch-cgv)

=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD

=> BH là pg của góc ABC (đn)

c, AB = BD (gt) có BD = 6 (gt)

=> AB = 6 

BD + DC = BC 

BD = 6; CD = 4

=> BC =10

tam giác ABC vuông tại A (Gt)

=> BC^2 = AB^2 + AC^2

=> AC^2 = 10^2 - 6^2

=> AC^2 = 64

=> AC = 8 do AC > 0

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

DO đó: ΔABE=ΔADE

b: Ta có: ΔABD cân tại A

mà AI là đường phân giác

nên I là trung điểm của BD