Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:
$AB=AE$ (gt)
$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)
$AD$ chung
$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$
$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$
$\Rightarrow \widehat{DBM}=\widehat{DEC}$
Xét tam giác $DBM$ và $DEC$ có:
$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)
$BD=ED$ (cmt)
$\widehat{DBM}=\widehat{DEC}$ (cmt)
$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)
a, Xét tam giác ABD và AED cs:
AB=AE(gt)
góc BAD=EAD(p.g)
AD: cạnh chung
=> tam giác ABD=AED(c.g.c)
b, từ a=> góc ABD=AED(2 góc t/ứng)
Xét tam giác ABC và AEF cs:
góc ABD=AED(cmt)
AB=AE(gt)
góc A: góc chung
=> tam giác ABC=AEF(g.c.g)
c, từ b=> AC=AF(2 cạnh t/ứng)
Xét tam giác FAM và CAM cs:
AF=AC(cmt)
góc FAM=CAM (gt)
AM: cạnh chung
=> tam giác FAM=CAM(c.g.c)
=>FM=MC(2 cạnh t/ứng)
=> DM là đường trung tuyến của đt FC
Xét tam giác DFC cs:
DM là đường trung tuyến
CN là đường trung tuyến ( vì DN=NF)
Mà DM và CN giao nhau tại G
=> G là trọng tâm của tam giác DFC
=> CG/GN=2( t/c trọng tâm trg tam giác)
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a) * Xét tam giác ADB và tam giác ADE, ta có:
- AB = AE(gt)
- Góc BAD = góc EAD( do AD là phân giác góc BAC : theo gt)
- Chung cạnh AD
=> Tam giác ADB = Tam giác ADE(c-g-c) (1)
* Từ (1) => Góc ABD= góc AEB( các yếu tố tương ứng) (dpcm)
b và c tự tìm nha