K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

a) cm dễ

b) Tứ giác BCEF có góc BEC = góc BFC = 900 nên nội tiếp

Xét tam giác AEF và tam giác ABC có : góc A chung, góc AEF = góc ABC (BCEF nội tiếp) nên đồng dạng

c) Kẻ đường kính AM của (O)

góc ABM = 900 (góc nội tiếp chắn nửa (O)) => AB vuông góc BM mà AB vuông góc CH => BM // CH

cmtt ta cũng có CM // BH. Vậy tứ giác BHCM là hình bình hành

mà N là trung điểm của BC => N là trung điểm của HM => ON là đường tb của tam giác AHM => ON = 1/2AH hay AH = 2ON

7 tháng 4 2019

trả lời

đề này bn làm đc câu mấy rồi

hok tốt

7 tháng 4 2019

khong giỏi hình, mk chỉ cần câu c

12 tháng 2 2020

bạn ơi bạn lấy cái đề ở đâu thế , mà cách đỉnh của 1 tứ giác cũng viết nữa

phải là BFEC chứ

20 tháng 4 2020

Giải chi tiết:

a) Chứng minh tứ giác AEHF và BCEF nội tiếp.

Ta có ∠AEH=∠AFH=90o⇒∠AEH=∠AFH=90o⇒ E, F thuộc đường tròn đường kính AH

⇒⇒ A, E, H, F cùng thuộc một đường tròn

⇒AEHF⇒AEHF là tứ giác nội tiếp (dhnb).

Ta có ∠BEC=∠BFC=90o⇒∠BEC=∠BFC=90o⇒ BCEF  là tứ giác nội tiếp (dhnb)

b) Hai đường thẳng EF và BC cắt nhau tại I. Vẽ tiếp tuyến ID với (O)(O)(D là tiếp điểm, D thuộc cung nhỏ BC). Chứng minh ID2=IB.ICID2=IB.IC.

Xét ΔIBDΔIBD và ΔIDCΔIDC có:

∠I∠I  chung

∠IDB=∠ICD∠IDB=∠ICD (ID là tiếp tuyến của (O)(O))

⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).

c) DE, DF cắt đường tròn (O)(O) tại M và N. Chứng minh NM // EF.

Xét ΔIBEΔIBE và ΔIFCΔIFC có:

∠I∠I chung

∠IEB=∠ICF∠IEB=∠ICF (BCEF  là tứ giác nội tiếp)

⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF (kết hợp b)

⇒ID2=IE.IF⇒IDIE=IFID⇒ID2=IE.IF⇒IDIE=IFID 

Xét ΔIDFΔIDF và ΔIEDΔIED có:

∠I∠I chung

 IDIE=IFID(cmt)IDIE=IFID(cmt)

⇒ΔIDF∼ΔIED⇒∠IDF=∠IED⇒ΔIDF∼ΔIED⇒∠IDF=∠IED (2 góc tương ứng)

Mặt khác ∠IDF=∠NMD∠IDF=∠NMD (ID là tiếp tuyến của (O)(O)) ⇒∠IED=∠NMD⇒∠IED=∠NMD (tc)

Mà hai góc này ở vị trí đồng vị ⇒⇒ NM // EF.

28 tháng 4 2020

Cho tam giác ABC nhọn AB

A B C

CHÚC BẠN HỌC TỐT

17 tháng 3 2023

Giải

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0