K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

nên ABEC là hình bình hành

=>BE=AC

b: Vì ABEC là hình bình hành

nên BE=AC

mà AC<AB

nên BE<AB

=>góc BAE<góc AEB

a: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>BE=AC

b: AC=BE

mà AB>AC

nên BA>BE

=>góc BEA>góc BAE

a: Xét tứgiác ABEC có

M là trug điểm chung của AE và BC

nên ABEC là hình bình hành

Suy ra: BE=AC

b: Ta có: BE=AC
mà AC<AB

nên BE<AB

=>góc BAE<góc AEB

3 tháng 8 2018

a, Ta có : M là trung điểm của BC => MB = MC

Xét ΔAMC và ΔEMB có:

AM= EM (gt)

MC =MB(cmt)

∠AMC =∠ EMB (đối đỉnh)

=> ΔAMC =ΔEMB (c-g-c)

=> BE = AC (hai cạnh tương ứng)

b, Do ΔAMC = ΔEMB => ∠AEB = ∠EAC

mà ∠EAC =∠EAD + ∠DAC

=>∠AEB = ∠EAD + ∠DAC

=> ∠AEB > ∠DAC

Mặt khác: ∠BAD = ∠DAC (AD là p/giác góc A)

=>∠AEB > ∠BAD

=> ∠AEB > ∠BAE +∠EAD

=>∠AEB > ∠BAE

ý kiến riêng: mình nghĩ câu c đề sai nên mình CM: AB + BD > AC + CD

c,Ta có : MB = MC

=> MB = MD+DC

=>MB > DC

=>MB +MD > DC

=> BD > DC (1)

Xét ΔBAE có : ∠AEB > ∠BAE (cmt)

=> AB > BE ( cạnh đối diện với góc lớn hơn thì lớn hơn)

mà BE=AC (cmt) => AB > AC (2)

Từ (1) và (2) suy ra : AB + BD > AC +CD

3 tháng 8 2018

chứng mih được bạn ak, phải vẽ thêm hình

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

1 tháng 3 2018

a)xét tam giác ABM và tam giác DCM có:

BN=CM(GT)

góc BMA=góc CMD(đđ)

AM-DM(GT)

\(\Rightarrow\)tam giác ABM=tam giác DCM(c.g.c)

1 tháng 3 2018

b)theo câu a: tam giác ABM=tam giác DCM

\(\Rightarrow\)góc BAM= góc MDC(2 góc tương ứng)

mà đây là cặp góc so le trong

\(\Rightarrow\)AB//CD

\(\Rightarrow\)góc BAC= góc ACD=90 độ\(\Rightarrow\)CD \(\perp\)AC

c) xét tam giác AHC và tam giác EHC có:

AH=EH(GT)

góc AHC=góc EHC=90 độ

HC chung

\(\Rightarrow\)tam giác AHC = tam giác EHC(c.g.c)

\(\Rightarrow\)CA=CE(2 cạnh tương ứng)

\(\Rightarrow\)tam giác CAE cân tại C

25 tháng 12 2016

1 2 3 A B C D D M 1 2

Ta có hình vẽ trên :

a) Xét 2 tam giác ABM và tam giác ACM có:

AB = AC (gt)

AM là cạnh chung

BM = MC (gt)

=>. tam giác ABM = tam giác ACM (c-c-c)

=> góc A1 = góc A2 (2 góc tương ứng)

=> AM là tia phân giác của góc BAC

b) Vì tam giác ABM = tam giác ACM

nên góc AMB = góc AMC (2 góc tương ứng)

mà góc AMB + góc AMC = 180 độ

=> góc AMB = góc AMC = 180/ 2 = 90 độ

=> AM vuông góc vói BC

c) Xét 2 tam giác vuông AMB và tam giác và tam giác DMC có:

MA =DM (gt)

BM = MC (gt)

=> tam giác AMB = tam giác DMC (2 cạnh góc vuông)

=> AB = DC (2 cạnh tương ứng)