Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(Đl pytago)
Thay số:36+64=BC^2
=>BC= căn 100=10cm
Xét tam giác ABC có BD là phân giác góc ABC(gt),có:
AB/AC=AD/DC(Tính chất đường phân giác trong tam giác)
<=>AB/AB+AC=AD/AD+DC(Tính chất tỉ lệ thức)
Thay số:6/16=AD/8
<=>16AD=48
<=>AD=3cm
Vì D thuộc AC(gt)
=>AD+DC=AC
Thay số:3+DC=8
<=>DC=5cm
b) Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.10)/2=24
<=>AH=24.2÷10=4,8cm
Xét tam giác ABC đồng dạng tam giác HAC có:
+Góc C chung
+Góc AHC=góc BAC=90 độ
=>tam giác ABC đồng dạng tam giác HAC(g.g)
=> AH/AB=CH/AC(Cặp cạnh tương ứng)
Thay số : 4,8/6=CH/8
=>CH=4,8.8÷6=6,4cm
c)
a, Xét △ ABC vuông tại A có:
BC2 = AC2 + AB2 (định lý Pytago)
=> BC2 = 62 + 82 = 100
=> BC = 10 cm
Vì AD là phân giác \(\widehat{BAC}\) (gt)
\(\Rightarrow\frac{CD}{AC}=\frac{BD}{AB}=\frac{CD+BD}{AC+AB}=\frac{BC}{6+8}=\frac{10}{14}=\frac{5}{7}\)(áp dụng t/c dãy tỉ số bằng nhau)
Do đó: \(\frac{CD}{AC}=\frac{5}{7}\) \(\Rightarrow\frac{CD}{6}=\frac{5}{7}\) \(\Rightarrow CD=\frac{6.5}{7}=\frac{30}{7}\)(cm)
\(\frac{BD}{AB}=\frac{5}{7}\)\(\Rightarrow\frac{BD}{8}=\frac{5}{7}\)\(\Rightarrow BD=\frac{8.5}{7}=\frac{40}{7}\)(cm)
b, Xét △AHB vuông tại H và △AEH vuông tại E
Có: \(\widehat{HAB}\)là góc chung
=> △AHB ᔕ △AEH (g.g)
\(\Rightarrow\frac{AH}{AE}=\frac{AB}{AH}\)
=> AH . AH = AE . AB
=> AH2 = AE . AB
c, Xét △AHC vuông tại H và △AFH vuông tại F
Có: \(\widehat{HAC}\)là góc chung
=> △AHC ᔕ △AFH (g.g)
\(\Rightarrow\frac{AH}{AF}=\frac{AC}{AH}\)
=> AH2 = AF . AC
mà AH2 = AE . AB (cmt)
=> AE . AB = AF . AC
e) \(AH\perp BC\)(giả thiết).
\(\Rightarrow\Delta HAB\)vuông tại H.
\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Vì \(\Delta ABC\)vuông tại A (giả thiết).
\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)
\(\Rightarrow\Delta ADB\)vuông tại A.
\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)
Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))
\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)
Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)
\(\Rightarrow9+S_{BCD}=24\)(thay số).
\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)
Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\) \(BC=\sqrt{100}=10\)
b) Xét \(\Delta HAB\)và \(\Delta HCA\)có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{HAB}=\widehat{HCA}\) (cùng phụ với góc HAC)
suy ra: \(\Delta HAB~\Delta HCA\)(g.g)
c) Xét \(\Delta ABH\)và \(\Delta CBA\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) CHUNG
suy ra: \(\Delta ABH~\Delta CBA\) (g.g)
\(\Rightarrow\)\(\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow\)\(BH.BC=AB^2\) (1)
\(BE=BC-CE=10-4=6\) \(\Rightarrow\)\(BE=AB\) \(\Rightarrow\)\(BE^2=AB^2\) (2)
Từ (1) và (2) suy ra: \(BE^2=BH.BC\)
d) \(S_{ABC}=\frac{AB.AC}{2}=24\)
\(\Delta ABC\) có \(BD\)là phân giác \(\widehat{ABC}\)
\(\Rightarrow\)\(\frac{S_{BAD}}{S_{BDC}}=\frac{AB}{BC}=\frac{3}{5}\)
\(\Rightarrow\)\(\frac{S_{BAD}}{3}=\frac{S_{BDC}}{5}=\frac{S_{BAD}+S_{BDC}}{3+5}=\frac{S_{ABC}}{8}=3\)
\(\Rightarrow\)\(S_{BAD}=9\)
Xét \(\Delta ABD\)và \(\Delta EBD\) có:
\(AB=EB\) (câu c)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
\(BD:\)chung
suy ra: \(\Delta ABD=\Delta EBD\) (c.g.c)
\(\Rightarrow\)\(S_{ABD}=S_{EBD}=9\)
\(\Rightarrow\)\(S_{CED}=S_{ABC}-S_{ABD}-S_{EBD}=6\)
p/s: tính diện tích CED còn cách khác, bn dễ dàng c/m tgiac CED ~ tgiac CAB, đến đây thì lm típ nha,
A)ÁP DỤNG ĐỊNH LÍ PY-TA-GO VÀO TAM GIÁC ABC TA ĐƯỢC :
AB2+AC2=BC2
BC2=62+82
BC2=100
BC=10(CM)
B) XIN BẠN XEM LẠI CÂU B