Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AIH và tam giác AIK ta có:
AI là cạnh chung
\(\widehat{AHI}=\widehat{AKI}=90^o\)
\(\widehat{HAI}=\widehat{IAK}\)
\(\Rightarrow\Delta AIH=\Delta AIK\left(đpcm\right)\)
b) Xét tam giác HIB và tam giác KIC ta có:
IH = IK ( tam giác AIH = tam giác AIK )
\(\widehat{BHI}=\widehat{IKC}=90^o\)
\(IB=IC\left(=\frac{1}{2}BC\right)\)
\(\Rightarrow\Delta HIB=\Delta KIC\Rightarrow BH=CK\left(đpcm\right)\)
Xét ∆BMI và ∆CMI, ta có:
+) BM = CM (vì IM là đường trung trực của BC)
+) \(\widehat{BMI}=\widehat{CMI}=90^0\)
+) MI cạnh chung
Suy ra: ∆BMI = ∆CMI (c.g.c)
⇒ IB = IC (hai cạnh tương ứng)
Xét hai tam giác vuông IHA và IKA, có:
+) \(\widehat{HAI}=\widehat{KAI}\) (AI là phân giác góc A)
+) AI cạnh huyền chung
Suy ra: ∆IHA = ∆IKA (cạnh huyền - góc nhọn)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông IHB và IKC, có:
+) IB = IC (chứng minh trên)
+) IH = IK (chứng minh trên)
Suy ra: ∆IHB = ∆IKC (cạnh huyền - cạnh góc vuông)
Suy ra: BH = CK (2 cạnh tương ứng)
A B C H M K I
Gọi M là trung điểm của BC
Xét hai tam giác vuông BMI và CMI có:
BM = CM (vì M là trung điểm của BC)
MI: cạnh chung
Vậy: \(\Delta BMI=\Delta CMI\left(hcgv\right)\)
Suy ra: IB = IC (hai cạnh tương ứng)
Xét hai tam giác vuông AHI và AKI có:
AI: cạnh huyền chung
\(\widehat{HAI}=\widehat{KAI}\left(gt\right)\)
Vậy: \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông IHB và IKC có:
IB = IC (cmt)
IH = IK (cmt)
Vậy: \(\Delta IHB=\Delta IKC\left(ch-cgv\right)\)
Suy ra: BH = CK (hai cạnh tương ứng).
Xét : tg BHI và tg KIC
Có : I là góc chung
H=K=90
Mà :AH=AK=>HB=KC
=>tg HBI =tg KIC
=> BH=CK(2 cạnh tương ứng)