K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Có: AB=AC (GT)

=>△ABC cân

Do đó: Góc B= Góc C

Xét △BNC và △CMB có

BN=CM(GT)

Góc B= Góc C

BC chung

Do đó: △BNC = △CMB

21 tháng 11 2017

bạn xét tam giác ANC và TG AMB(c.g.c)

=>góc MCK = GÓC NBK

Có △BNC=△CMB

|=>BNC=BMC

=>TG NKB=TG MKC (G.C.G)

=>BK=KC

a: Xét ΔBNC và ΔCMB có 

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó: ΔBNC=ΔCMB

b: Ta có: ΔBNC=ΔCMB

nên \(\widehat{NCB}=\widehat{MBC}\)

hay \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)

nên ΔKBC cân tại K

hay KB=KC

19 tháng 9 2016

A B C N M

Xét \(\Delta ABC\) có :

 \(AB=AC\) ( gt )

\(\Rightarrow\Delta ABC\) cân tại \(\widehat{A}\)

\(\Rightarrow\widehat{B}=\widehat{C}\)

Ta có : \(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)

Xét \(\Delta BNC\) và \(\Delta CMB\) có :

  \(CN=BM\left(cmt\right)\)

   \(\widehat{B}=\widehat{C}\left(cmt\right)\)

  \(AC\) là cạnh chung 

Do đó 2 tam giác bằng nhau.

Vậy ...................

19 tháng 9 2016

M là trung điểm của AC

=> AM = MC = AC/2

N là trung điểm của AB

=> AN = NB = AB/2

mà AC = AB (tam giác ABC cân tại A)

=> MC = NB

Xét tam giác BNC và tam giác CMB có:

NB = MC (chứng minh trên)

NBC = MCB (tam giác ABC cân tại A)

BC là cạnh chung

=> Tam giác BNC = Tam giác CMB (c.g.c)

17 tháng 7 2016

A B C M N

Vì \(\Delta ABC\)có \(AB=AC\) nên cân tại A.

\(\Rightarrow\)Góc NBC = Góc MCB

\(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)

Xét \(\Delta BNC\)và \(\Delta CMB:\)

\(CN=BM\)( chứng minh trên )

Góc NBC = Góc MCB( chứng minh trên )

Chung cạnh BC

\(\Rightarrow\Delta BNC=\Delta CMB\)

Vậy \(\Delta BNC=\Delta CMB\)

17 tháng 7 2016

Chưa hỉu cho lắm bn giảng thêm đc không

18 tháng 6 2017

Lần sau tìm trước khi hỏi nhé bạn: Câu hỏi của nguyễn Thùy Linh - Toán lớp 7 | Học trực tuyến

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm