K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

A B C M N

a, Vì AB = AC => \(\Delta ABC\)cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta ABM\)và \(\Delta ACN\), ta có:

AB = AC (gt)

\(\widehat{ABC}=\widehat{ACB}\)(Chứng minh trên)

BM = CN (gt)

=> \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)

=> \(\widehat{BAM}=\widehat{CAN}\)

Vậy \(\widehat{BAM}=\widehat{CAN}\)

b,Vì \(\Delta ABM=\Delta ACN\)(Chứng minh trên) => AM = AN

=> \(\Delta AMN\)cân tại A

\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)

Vậy \(\widehat{AMN}=\widehat{ANM}\)

30 tháng 12 2016

hình vẽ đấy nhé

GIAI

a ) xét tam giác AMB và tam giác CMN có

AM = MC ( M là trung điểm của AC )

góc AMB = goc CMN ( đối đỉnh )

MB = MN ( M là trung điểm của BN )

=> tam giác AMB = tam giác CMN ( c.g.c)

=> AB = CN ( 2 cạnh tương ứng )

=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )

=> CN vuông góc với AC (dpcm )

b ) chúng minh tương tự

=> tam giác ANM = tam giác CBM ( c.g.c )

=> AN = BC ( 2 cạnh tương ứng )

=> góc ANM = góc CBM ( 2 góc tương ứng )

mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC

=> AN song song BC ( dpcm)

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao choAM > BM và AN > CN. Chứng minh rằng:a) BC < BM + CN + MN.b) BC nhỏ hơn chu vi của tam giác AMN.Bài 2. Tính chu vi của tam giác cân ABC, biết:a) AB = 2cm, AC = 5cmb) AB = 16cm, AC = 8cm.Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M khôngtrùng với C). Chứng minh MA + MB > CA + CB.Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền...
Đọc tiếp

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao cho
AM > BM và AN > CN. Chứng minh rằng:
a) BC < BM + CN + MN.
b) BC nhỏ hơn chu vi của tam giác AMN.

Bài 2. Tính chu vi của tam giác cân ABC, biết:
a) AB = 2cm, AC = 5cm
b) AB = 16cm, AC = 8cm.

Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M không
trùng với C). Chứng minh MA + MB > CA + CB.

Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền trong của góc. Hãy xác định điểm A
trên Ox, điểm B trên Oy sao cho chu vi tam giác MAB là nhỏ nhất (Gợi ý: Lấy E, F
sao cho Ox là trung trực của ME, Oy là trung trực của MF).

Bài 5. Cho tam giác ABC, điểm O nằm giữa B và C. Trên tia đối của tia OA lấy điểm
D. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh

MN< hoặc = (AC+BD)/2

Bài 6. Cho góc xOy, vẽ Oz là tia phân giác của góc xOy. Từ điểm M ở trong góc xOz
vẽ MH vuông góc với Ox (H thuộc Ox), vẽ MK vuông góc với Oy (K thuộc Oy).
Chứng minh MH < MK.

0

a) Xét \(\Delta ABI\)và \(\Delta ACI\)có:

        AB = AC (gt)

        AI là cạnh chung

        BI = CI (I là trung điểm của BC)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)(2 góc tương ứng)

      \(\widehat{BAI}=\widehat{CAI}\)(2 góc tương ứng)

=> AI là tia phân giác của góc BAC

b) Xét \(\Delta ABM\)và \(\Delta ACN\)có:

         AB = AC (gt)

         \(\widehat{ABM}=\widehat{ACN}\)(cm a)

         BM = CN (gt)

\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\)

=> AM = AN (2 cạnh tương ứng)

b) Ta có: \(\Delta ABI=\Delta ACI\)(theo a)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng)

Mà \(\widehat{AIB}+\widehat{AIC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AI\perp BC\)

Vậy AI và BC là hai đường thẳng vuông góc

16 tháng 12 2019

Hình tự vé nha bạn !!!

a)  Xét tam giác vuông ABI và ACI ( ABI = 90 độ và AIC = 90 độ ) có :

AB = AC 

BI = CI ( vì I là trung điểm của BC )

Suy ra Tam giác vuông ABI = Tam giác vuông ACI ( hai cạnh góc vuông )

Suy ra góc BAI = góc CAI ( 2 góc tương ứng ) 

BAI = CAI = \(\frac{BAC}{2}\)

Suy ra AI là tia phân giác góc BAC 

Bạn làm phần a, trước đi nhé !!!

CHÚC BẠN HỌC TỐT !!

25 tháng 12 2019
ccccc 
ccccccc 
  
1 tháng 5 2018

tham khảo ở đây nhé :

Câu hỏi của Nàng tiên cá - Toán lớp 7 - Học toán với OnlineMath