K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

a) xét tg ABM & tg DCM có

MB=MC (vì M là trung điểm BC)

AMB^ =DMC^(2 GÓC ĐỐI ĐỈNH)

MA =MD (GT)

=) tg ABM=tg DCM(c.g.c)

vậy.......

b) Vì tg ABC =TG   DCM nên ABM^ =DCM^ (2 góc tương ứng)

Mà ABM^ & DCM^ ở vị trí so le trong nên AB//DC

vậy.....

c)Xét tg ABM& ACM có

AB =AC (gt)

AM là cạnh chung

BM =CM( vì M là trung điểm BC)

=)      tg ACM =ABM(C.c.c)

=) AMB^ =AMC^ ( 2 góc tương ứng)

Mà    AMB^ +AMC=180 (2 góc kề bù )

nên AMB^ =AMC=90

=) AM vuông góc vs BC

mk đã làm chi tiết lắm đó Vân Khánh 

good luck 

3 tháng 8 2019

A) Vì tam giác ABC cân tại A nên AB=AB ( 2 cạnh t.ư) và ABC=ACB (2 góc t.ư)

    xét tam giác ABM và tam giác ACM 

        AC=AB (cmt)

      ABC= ACB (cmt)

      BM=MC

     Suy ra tam giác ABM = tam giác ACM ( C.G.C)

 B) vì tam giác ABM = tam giác ACM (câu a ) nên AMB= AMC ( 2 góc t.ư)

    ta có AMB+AMC = 180độ (2 góc kề bù)

   suy ra AMB=AMC =180độ : 2= 90độ

  suy ra AM vuông góc với BC

C) Vì AMB  và DMC là 2 góc đối đỉnh nên AMB=DMC

    Xét tam giác ABM và tam giác DCM

     AM=MD 

    AMB=DMC (2 góc đối đỉnh)

   BM = MC

  suy ra tam giác AMB= tam giác DMC (C.G.C)

D) Vì tam giác AMB = tam giác DMC (câu c ) nên ABM = MCD ( 2 góc t.ư)

     mà 2 góc này ở vị trí SLT nên AB//CD

CHÚC BẠN HỌC TỐT!

    

30 tháng 12 2015

Làm ơn giải giùm hộ với ạ, đang cần gấp

26 tháng 2 2020

A B C D M O E (Hình ảnh chỉ mang tính chất minh họa )

a)

+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :

AM = DM (gt)

góc AMB = góc DMC ( đối đỉnh )

BM = CM (gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )

=> AB = DC ( hai canh tương ứng )

+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)

=> góc ABM = góc DCM ( hai góc tương ứng )

Mà hai góc này ở vị trí sole trong

=> AB // DC

b) Ta có : AB // CD (cmt)

 AB \(\perp\) AC (gt)

=> DC \(\perp\)AC

Xét \(\Delta\)ABC và \(\Delta\)CDA có :

AB = CD (cmt)

góc BAC = góc DCA ( = 90 độ )

AC chung

=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )

=> BC = DA ( hai cạnh tương ứng )

Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)

c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :

AB chung

góc BAE = góc BAC ( = 90 độ )

AE = AC (gt)

=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )

=> BE = BC và góc BEA = góc  BCA ( hai góc tương ứng )  (1)

Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)

=> \(\Delta\)AMC cân tại M

=> góc MAC = góc MCA 

hay góc MAC = góc BCA (2)

Từ (1) và (2) => góc MAC = góc BEC

Mà hai góc này ở vị trí đồng vị

=> AM // BE (đpcm)

d) Câu này mình không hiểu đề lắm !!

Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.

e) Ta có : BE // AM

=> BE // AD

=> góc EBO = góc DAO

Xét \(\Delta\)EBO và \(\Delta\)DAO có :

BE = AD ( = BC )

góc EBO = góc DAO (cmt)

OB = OA (gt)

=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )

=> góc EOB = góc DOA ( hai góc tương ứng )

Mà : góc EOB + góc EOA = 180 độ

=> góc DOA + góc EOA = 180 độ

hay : góc EOD = 180 độ

=> Ba điểm E, O, D thẳng hàng (đpcm)

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

15 tháng 7 2016

Xét tam giác ABM và tam giác DCM có: 

AM=MD

góc AMB=góc CMD ( đối đỉnh)

BM=CM ( M là trung điểm của BC)

=> tam giác ABM=tam giác DCM( c.g.c)

b) theo a): tam giác ABM=tam giác DCM => góc BAM=góc D

mà chúng là hai góc so le trong => AB//DC

c) Vì AB=AC=> tam giác ABC cân tại A

tam giác ABC có AM là đường trung tuyến nên đồng thời là đường trung trực => AM vuông góc vs BC

d)  Để góc ADC=30 độ thì góc BAM=30 độ

=> góc B= 90 độ-30 độ=60 độ

tam giác ABC cân tai A có góc B =60 độ

=> tam giác ABC đều

Vậy tam giác ABC đều thì góc ADC=30 độ

14 tháng 12 2016

ai tl dùm cái

27 tháng 12 2016

Bạn tự vẽ hình nhá :/

a)Ta có:

AM là trung tuyến đồng thời là đường cao của tg ABC cân tại A (gt)

=> góc AMB =góc AMC =góc DMB =góc DMC =90*

Xét tg ABM và tg DMC ta có:

AM=DM (gt)

g AMB =g DMC =90* (cmt)

MB =MC (M là tđ BC)

=> tg AMB =tg DMC (c.g.c)

b)Vì AMB =DMC (cmt)

=> g ABM =g DMC (yếu tố tương ứng /yttư)

Mà 2 góc này ở vị trí so le trong

=> AB//CD

c)Vì AM là đường cao của tg ABC (ghi ở đầu bài rồi :/)

=> AM_|_BC

d)Theo đề bài, ta có:

g ABC =g ACB =30* (tg ABC cân)

Mà g A+g B+g C =180* (tổng 3 g trong 1 tg)

=> g A=180*-g B-g C=180*-30*-30*=120*

Vậy, nếu tg ABC có g A=120* thì g ABC=30*

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔACB cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

28 tháng 12 2016

A B C D M

a,Xét \(\Delta ABM\) và  \(\Delta DCM\) ta có :

\(AM=MD\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

b, Vì \(\Delta ABM=\Delta DCM\)( Câu a )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên :

=> AB // DC 

c, Ta có : AM là trung tuyến đông thời cũng là đường cao của tam giác ABC cân tại A;

\(\Rightarrow AM⊥BC\)

câu d bn tự làm nha