Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto AB=(1;2)
vecto BC=(3;-2)
vecto AC=(4;0)
b: Tọa độ I là:
x=(-1+0)/2=-1/2 và y=(2+4)/2=3
Tọa độ G là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+0+3}{3}=\dfrac{2}{3}\\y=\dfrac{2+4+2}{3}=\dfrac{8}{3}\end{matrix}\right.\)
c: vecto AB=(1;2); vecto BC=(3;-2); vecto AC=(4;0)
A(-1;2); B(0;4); C(3;2)
PTTS của AB là:
x=-1+t và y=2+2t
PTTS của AC là:
x=-1+4t và y=2+0t=2
PTTS của BC là;
x=3+4t và y=2+0t=2
vecto AB=(1;2)
=>VTPT là (-2;1)
PTTQ của AB là:
-2(x+1)+1(y-2)=0
=>-2x-2+y-2=0
=>-2x+y-4=0
vecto AC=(4;0)
=>VTPT là (0;-4)
Phương trình AC là:
0(x-3)+(-4)(y-2)=0
=>y=2
d/
Trung trực của BC đi qua \(M\left(\frac{3}{2};4\right)\) và vuông góc BC nên nhận \(\left(-1;2\right)\) là 1 vtpt
Phương trình trung trực BC:
\(-1\left(x-\frac{3}{2}\right)+2\left(y-4\right)=0\Leftrightarrow-x+2y-\frac{13}{2}=0\)
e/ \(\overrightarrow{AB}=\left(4;2\right)\Rightarrow AB=2\sqrt{5}\)
\(\overrightarrow{AC}=\left(3;4\right)\Rightarrow AC=5\)
Gọi D là chân đường phân giác trong góc A trên BC
Theo định lý phân giác: \(\frac{DB}{AB}=\frac{DC}{AC}\Rightarrow DB=\frac{AB}{AC}DC=\frac{2\sqrt{5}}{5}DC\)
\(\Rightarrow\overrightarrow{DB}=-\frac{2\sqrt{5}}{5}\overrightarrow{DC}\)
\(\Rightarrow\overrightarrow{DC}=\left(5-2\sqrt{5}\right)\overrightarrow{BC}=\left(-5+2\sqrt{5};10-4\sqrt{5}\right)\)
\(\Rightarrow D\left(6-2\sqrt{5};-5+4\sqrt{5}\right)\)
\(\Rightarrow\overrightarrow{AD}=\left(8-2\sqrt{5};-6+4\sqrt{5}\right)\)
Đường thẳng AD nhận \(\left(6-4\sqrt{5};8-2\sqrt{5}\right)\) là 1 vtpt
Phương trình AD:
\(\left(6-4\sqrt{5}\right)\left(x+2\right)+\left(8-2\sqrt{5}\right)\left(y-1\right)=0\)
Bạn tự rút gọn, số xấu quá
a/ \(\overrightarrow{BC}=\left(-1;2\right)\)
\(\Rightarrow\) Đường thẳng BC nhận \(\left(2;1\right)\) là 1 vtpt
Phương trình BC:
\(2\left(x-2\right)+1\left(y-3\right)=0\Leftrightarrow2x+y-7=0\)
b/ \(AH\perp BC\) nên đường thẳng AH nhận \(\left(-1;2\right)\) là 1 vtpt
Phương trình AH:
\(-1\left(x+2\right)+2\left(y-1\right)=0\Leftrightarrow-x+2y-4=0\)
c/ Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{3}{2};4\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};3\right)=\frac{1}{2}\left(7;6\right)\Rightarrow\) đường thẳng AM nhận \(\left(6;-7\right)\) là 1 vtpt
Phương trình AM:
\(6\left(x+2\right)-7\left(y-1\right)=0\Leftrightarrow6x+7y+19=0\)
b) \(AB=\sqrt{\left(-4-0\right)^2+\left(1-2\right)^2}=\sqrt{17}\)
\(AC=\sqrt{\left(-4-3\right)^2+\left(1+1\right)^2}=\sqrt{53}\)
\(BC=\sqrt{\left(0-3\right)^2+\left(2+1\right)^2}=3\sqrt{2}\)
Nửa chu vi là:
\(P=\dfrac{AB+BC+AC}{2}=\dfrac{\sqrt{17}+\sqrt{53}+3\sqrt{2}}{2}\)
Diện tích là:
\(S=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-AC\right)\cdot\left(P-BC\right)}\)
\(=\sqrt{\dfrac{\sqrt{17}+\sqrt{53}+3\sqrt{2}}{2}\cdot\dfrac{-\sqrt{17}+\sqrt{53}+3\sqrt{2}}{2}\cdot\dfrac{\sqrt{17}-\sqrt{53}+3\sqrt{2}}{2}\cdot\dfrac{\sqrt{17}+\sqrt{53}-3\sqrt{2}}{2}}\)
\(=\dfrac{15}{2}\left(đvdt\right)\)
a, Vec-tơ AB=(-3;4) => vtpt của đường thẳng AB là (4;3)
Pt AB: 4(x-2)+3(y-2)=0 <=> 4x+3y-14=0
Pt AC và BC làm tương tự
b, Đường cao AH có vtpt là vecto BC=(-4;-3) hay =(4;3)
Pt đường cao AH: 4(x-2)+3(y-2)=0 <=> 4x+3y-14=0
c) ta có độ dài đoạn AB= căn của (-1+2)^2+(6-2)^2 =5
" " BC= căn của (-5+1)^2+(3-6)^2 =5
==> Tan giác ABC cân tại B (1)
lại có véc tơ AB=(-3;4), véc tơ BC=(-4;-3) =>véc tơ AB*BC =(-3)*4+(-4)*(-3) =0
===>tam giác vuông tại B (2)
từ (1,2) ==> tam giác ABC vuông cân
\(\overrightarrow{BC}=\left(-5;7\right)\Rightarrow\) đường thẳng BC nhận (7;5) là 1 vtpt
Phương trình tổng quát của BC (đi qua B) có dạng:
\(7\left(x-6\right)+5\left(y+2\right)=0\Leftrightarrow7x+5y-32=0\)
b.
Gọi H là chân đường cao ứng với BC
\(\Rightarrow AH=d\left(A;BC\right)=\dfrac{\left|7.0+5.4-32\right|}{\sqrt{7^2+5^2}}=\dfrac{6\sqrt{74}}{37}\)
\(BC=\sqrt{\left(-5\right)^2+7^2}=\sqrt{74}\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=6\)