Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
A B C 4 9
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
hay BC=15(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=15cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{15}{21}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)
a, Ta có \(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\approx\sin37^0\Leftrightarrow\widehat{C}\approx37^0\)
\(\Leftrightarrow\widehat{B}=90^0-\widehat{C}=53^0\)
b, Sửa đề: Hãy giải AD,DC
Vì BD là p/g nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\Rightarrow AD=\dfrac{3}{5}DC\)
Mà \(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\left(pytago\right)\)
Do đó \(\dfrac{3}{5}DC+DC=4\Rightarrow\dfrac{8}{5}DC=4\Rightarrow DC=\dfrac{5}{2}\left(cm\right)\)
\(\Rightarrow AD=\dfrac{3}{2}\left(cm\right)\)