K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

 a , xetys tứ giác adme có :

me//ad (vì me//ac)

md//ae(vì md//ab)

suy ra tứ giác adme là hbh 

Tự vẽ hình....

Giair

a, Ta có : 

\(\hept{\begin{cases}ME//AB\Rightarrow ME//AD\\MD//AC\Rightarrow MD//AE\end{cases}}\)

=>  ADME là hình bình hành ( đpcm )

b, Ta có : ADME là hình bình hành => AO=OM

Xét \(\Delta AHM\)

\(\hept{\begin{cases}AO=OM\\\widehat{H}=90^0\end{cases}}\)=> đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh ấy

=> HO=AO=OM 

=> \(\Delta AOH\)cân ( đpcm ) 

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

23 tháng 10 2021
Anser reply image Anser reply image Anser reply image Anser reply image Anser reply image 
4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC