K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

Đặt biểu thức đã cho là A

Đặt \(B=2^{2019}+2^{2018}+.......+2^1+2^0\)

\(\Rightarrow2B=2^{2020}+2^{2019}+.......+2^2+2\)

\(\Rightarrow2B-B=B=2^{2020}-2^0\)

\(\Rightarrow A=2^{2020}-\left(2^{2020}-2^0\right)=2^{2020}-2^{2020}+1=1\)

1 tháng 1 2018

\(\dfrac{x-4}{2021}+\dfrac{x-3}{2020}=\dfrac{x-2}{2019}+\dfrac{x-1}{2018}\)

\(\dfrac{x-4}{2021}+\dfrac{x-3}{2020}-\dfrac{x-2}{2019}-\dfrac{x-1}{2018}=0\)

\(\left(1+\dfrac{x-4}{2021}\right)+\left(1+\dfrac{x-3}{2020}\right)-\left(1+\dfrac{x-2}{2019}\right)-\left(1+\dfrac{x-1}{2018}\right)=0\)\(\dfrac{x+2017}{2021}+\dfrac{x+2017}{2020}-\dfrac{x+2017}{2019}-\dfrac{x+2017}{2018}=0\)

\(\left(x+2017\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\right)=0\)

⇔ x + 2017 = 0

⇔ x = -2017

Vậy x = -2017

26 tháng 6 2021

lol

a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)

=1-2/4=1/2

b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)

\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)

c: x-y=0 nên x=y

\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)

=2019

19 tháng 12 2019

B1:

\(A=\left(x+2020\right)^4+\left|y-2019\right|-2018\)

+Có: \(\left(x+2020\right)^4\ge0với\forall x\\\left|y-2019\right|\ge0với\forall y\\\Rightarrow \left(x+2020\right)^4+\left|y-2019\right|-2018\ge-2018\\ \Leftrightarrow A\ge-2018 \)

+Dấu "=" xảy ra khi

\(\left(x+2020\right)^4=0\\ \Leftrightarrow x=-2020\)

\(\left|y-2019\right|=0\\ \Leftrightarrow y=2019\)

+Vậy \(A_{min}=-2018\) khi \(x=-2020,y=2019\)

Tính [G(x) - f(x) ] = ( \(1-x^2+.....+x^{2020}\)) -  (\(x^{2020}-x^{2019}+....-x+1\))

                          = (\(x^{2020}-x^{2019}+....-x+1\)) - (\(x^{2020}-x^{2019}+....-x+1\))

                          = 0

=> h(x) = [G(x) - f(x) ] * [G(x) + f(x) ]

            = 0 * [G(x) + f(x) ]

           = 0