K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

\(x^2+y^2+z^2\ge xy+yz+xz\)\(\left(1\right)\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\)\(\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(luôn đúng )

\(\Rightarrow\)Phương trình ( 1) đúng ( đpcm)

Dấu bằng sảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)

4 tháng 5 2019

@Phạm Thị Thùy Linh hoặc có thể dùng bđt Cauchy cũng được, sau này lên lớp 9 sẽ áp dụng nhiều 

Bài làm :

Áp dụng bđt Cauchy ta có :

\(\hept{\begin{cases}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\x^2+z^2\ge2\sqrt{x^2z^2}=2xz\end{cases}}\)

Cộng vế của các bất đẳng thức ta được :

\(x^2+y^2+y^2+z^2+x^2+z^2\ge2xy+2yz+2xz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

3 tháng 7 2015

x2y - y2x+x2z - z2x +y2z +z2y - 2xyz = 0 

=> xy.(x - y) + xz. (x - z) + zy.(y + z) - xyz - xyz = 0 

=> [xy.(x - y) - xyz] + [xz.(x - z) - xyz] + zy,(y +z) = 0 

=> xy.(x - y - z) + xz.(x - z - y) + zy.(y +z) = 0

<=> (x-y-z). (y+z).x + zy.(y +z) = 0 

<=> (y +z). [x(x - y - z) + zy] = 0 

<=> y + z = 0 hoặc x(x - y - z) + zy = 0 

+) y + z = 0 => y;z đối nhau

+) x(x- y - z) + zy = 0 => x (x - y)  - z.(x - y) = 0  => (x - z)(x - y) = 0 => x = z hoặc x = y

Vậy ....

11 tháng 2 2017

câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)

câu 2: mình tạm chỉnh lại đề tý

\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)

câu 3:

\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)

\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)

\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)

Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010 

11 tháng 2 2017

câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)

thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)

\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)