Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)2018=\left|x-2016\right|+\left|x-2014\right|\)
\(\Rightarrow\hept{\begin{cases}x-2016+x-2014=2018\\x-2016+x-2014=-2018\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-2016-2014=2018\\2x-2016-2014=-2018\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=2018+2016+2014\\2x=-2018+2016+2014\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=6048\\2x=2012\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3024\\x=1006\end{cases}}\)
vậy x = 3024 hoặc x = 1006
b) \(\left(x-3\right)^x-\left(x-3\right)^{x+2}=0\)
\(\Rightarrow\left(x-3\right)^x-\left(x-3\right)^x\left(x-3\right)^2=0\)
\(\Rightarrow\left(x-3\right)^x\left[1-\left(x-3\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^x=0\\1-\left(x-3\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-3=0\\\left(x-3\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\\left(x-3\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x-3=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=4\end{cases}}\)
vậy x = 3 hoặc x = 4
Câu b: Đặt \(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{2004}-1\right)\)
Ta có: \(\frac{1}{2}-1=\left(-\frac{1}{2}\right);\frac{1}{3}-1=\left(-\frac{2}{3}\right);...;\frac{1}{2004}-1=\left(-\frac{2003}{2004}\right)\)
\(\Rightarrow B=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{2003}{2004}\right)\)
Vì B là 2003 thừa số âm nhân lại với nhau nên B là số âm
\(\Rightarrow B=-\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}\right)=-\frac{1}{2004}\)
Câu a: Đặt \(A=1+2^4+2^8;B=1+2+2^2+...+2^{11}\)
\(\Rightarrow16A=2^4+2^8+2^{12}\) \(\Rightarrow15A=2^{12}-1\) \(\Rightarrow A=\frac{2^{12}-1}{15}\) \(\left(1\right)\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{12}\) \(\Rightarrow B=2^{12}-1\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow A:B=\frac{2^{12}-1}{15}:\left(2^{12}-1\right)=\frac{1}{15}\)
Ta có \(|x-y+3|\ge0\forall x,y\)
\(2015\left(2y-3\right)^{2016}\ge0\forall y\)
\(\Rightarrow\hept{\begin{cases}|x-y+3|\ge0\\2015.\left(2y-3\right)^{2016}\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\\left(2y-3\right)^{2016}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\2y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\y=\frac{3}{2}\end{cases}}\)
Bạn thay vào tìm x
Mik cũng hok Toán 2
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_
1/
\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy...
Ta có : S = 1 + 31 + 32 + .... + 32018
=> S - 4 = 1 + 31 + 32 + .... + 32018 - 4
=> S - 4 = 32 + 33 + 34 + ..... + 32018
=> S - 4 = (32 + 33 + 34 ) + ...... + (32016 + 32017 + 32018)
=> S - 4 = 3(3 + 32 + 33) + ..... + 32015(3 + 32 + 33)
=> S - 4 = 3.39 + .... + 32015.39
=> S - 4 = 39 (3 + .... + 32015) chia hết cho 39
Ta thấy S=(3S-S):2
S=3^0+3^1+3^2+...+3^2018
\(\Rightarrow\)3S=3+3^2+3^3+...+3^2019
\(\Rightarrow\)3S-S=(3+3^2+3^3+..+3^2019)-(3^0+3^1+3^2+...+3^2018)
\(\Rightarrow\)3S-S=3^2019-3^0=3^2019-1\(\Rightarrow\)conf thiếu để bên dưới