K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
20 tháng 10 2018
Bạn xem tại đây :
Câu hỏi của Dương Thị Thu Ngọc - Toán lớp 9 | Học trực tuyến
10 tháng 1 2018
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}\ge\dfrac{2x}{z}\); \(\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{2y}{x}\); \(\dfrac{x^2}{y^2}+\dfrac{z^2}{x^2}\ge\dfrac{2z}{y}\)
Cộng ba vế bđt sau đó chia 2 ta được đpcm
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{4}{2y}\ge\frac{\left(1+2\right)^2}{x+2y}=\frac{9}{x+2y}\)(1)
Từ GT x + 2y ≤ 3z => \(\frac{1}{x+2y}\ge\frac{1}{3z}\)<=> \(\frac{9}{x+2y}\ge\frac{3}{z}\)(2)
Từ (1) và (2) => \(\frac{1}{x}+\frac{2}{y}\ge\frac{9}{x+2y}\ge\frac{3}{z}\)=> \(\frac{1}{x}+\frac{2}{y}\ge\frac{3}{z}\left(đpcm\right)\)
Đẳng thức xảy ra <=> x=y=z=1