Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left\{{}\begin{matrix}P=4\\P=-4\end{matrix}\right.\)
Vậy \(P=4;P=-4.\)
Chúc bạn học tốt!
nè mình giúp được ko
bài 2:\(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{y}=1\)
\(\left(\frac{1}{x}+\frac{1}{x}\right)+\left(\frac{1}{y}+\frac{1}{y}\right)=1\)
\(\left(\frac{2}{x}\right)+\left(\frac{2}{y}\right)=1\)
\(\frac{4}{xy}=1\)
\(xy=4:1\)
xy = 4
làm mò chưa chắc chắn
\(\frac{x+y}{z-y}=\frac{z+x}{z-x}\Leftrightarrow\frac{x+y}{x+z}=\frac{z-y}{z-x}=\frac{x}{z}=\frac{y}{x}\)
\(\Rightarrow x^2=yz\left(đpcm\right)\)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1)
Vì \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2018a}{2018b}=\frac{2019c}{2019d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{2018a}{2018b}=\frac{2019c}{2019d}=\frac{2018a+2019c}{2018b+2019d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{2018a+2019c}{2018b+2019d}.\)
\(\Rightarrow\left(2018a+2019c\right).\left(b+d\right)=\left(a+c\right).\left(2018b+2019d\right)\left(đpcm\right).\)
Chúc bạn học tốt!