\(x,y,z\ne-2\), \(2a=by+cz\)\(2b=a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ \(\hept{\begin{cases}2a=by+cz\\2b=cz+ax\\2c=ax+by\end{cases}}\)

\(\Rightarrow2\left(a+b+c\right)=2\left(ax+by+cz\right)\)

\(\Rightarrow a+b+c=ax+by+cz=ax+2a=a\left(x+2\right)\)

\(\Rightarrow\frac{1}{x+2}=\frac{a}{a+b+c}\)

Tương tự , ta có : \(\hept{\begin{cases}\frac{1}{y+2}=\frac{b}{a+b+c}\\\frac{1}{z+2}=\frac{c}{a+b+c}\end{cases}}\)

\(\Rightarrow A=\frac{a+b+c}{a+b+c}=1\)

Vậy \(A=1\)

10 tháng 2 2021
Theo giả thiết thì: 2=by+cz/a Tương tự biến đổi 2 cái kia dống vậy Rồi e thế ba số 2 vừa biến đổi vào biểu thức cần tính là ra
21 tháng 12 2017

Bạn tham khảo lời giải chi tiết ở đường link dưới nhé

Câu hỏi của nguyễn thế an - Toán lớp 8 - Học toán với OnlineMath

12 tháng 3 2021

Ta có:

\(2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow a+b+c=ax+by+cz\)

\(\Rightarrow a+b+c=ax+2a;a+b+c=by+2b;a+b+c=cz+2c\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{a}{a+b+c};\frac{1}{y+2}=\frac{b}{a+b+c};\frac{1}{z+2}=\frac{c}{a+b+c}\)

\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

12 tháng 3 2021

Ta có:\(\hept{\begin{cases}2a=by+cz\\2b=ax+cz\\2c=ax+by\end{cases}}\)

\(\Leftrightarrow2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow2a+2b+2c=2ax+2by+2cz\)

\(\Leftrightarrow2a+2b+2c-2ax-2by-2cz=0\)

\(\Leftrightarrow\left(2a-2ax\right)+\left(2b-2by\right)+\left(2c-2cz\right)=0\)

\(\Leftrightarrow2a\left(1-x\right)+2b\left(1-y\right)+2c\left(1-z\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}1-x=0\\1-y=0\\1-z=0\end{cases}\Leftrightarrow x=y=z=1}\)

\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{1+2}+\frac{1}{1+2}+\frac{1}{1+2}=1\)

5 tháng 9 2016

Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế :

\(x+y+z=2\left(ax+by+cz\right)\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)

Lại có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}=\frac{x}{ax+by+cz}\)

Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz};\frac{1}{c+1}=\frac{z}{ax+by+cz}\)

\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x}{ax+by+cz}+\frac{y}{ax+by+cz}+\frac{z}{ax+by+cz}\)

\(=\frac{x+y+z}{ax+by+cz}=2\)

5 tháng 9 2016

Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế : 

\(x+y+z=2\left(ax+by+cz\right)\)\(\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)

Ta có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}\)

\(\Rightarrow\frac{1}{a+1}=\frac{x}{ax+by+cz}\)

\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x+y+z}{ax+by+cz}=2\)

Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz}\) ; \(\frac{1}{c+1}=\frac{z}{ax+by+cz}\)

 

 

26 tháng 11 2016

\(\hept{\begin{cases}x=by+cz\left(1\right)\\y=ax+cz\left(2\right)\\z=ax+by\left(3\right)\end{cases}}\)

Cộng theo vế 3 đẳng thức trên:

\(x+y+z=2ax+2by+2cz=2\left(ax+by\right)+2cz=2z+2cz=2z\left(c+1\right)\)

\(=>\frac{1}{c+1}=\frac{2z}{x+y+z}\left(4\right)\)

Tương tự,ta có \(\frac{1}{a+1}=\frac{2x}{x+y+z}\left(5\right);\frac{1}{b+1}=\frac{2y}{x+y+z}\left(6\right)\)

cộng theo vế (4),(5),(6) ta đc:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (đpcm)

25 tháng 11 2016

http://olm.vn/hoi-dap/question/580063.html   (Câu hỏi của Anh Cao Ngọc)