K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

\(VT\ge2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)-3\)

\(\ge2\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)-\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=VP^{\left(đpcm\right)}\)

11 tháng 6 2016

Em mới học lớp 7

12 tháng 6 2016

e năm nay ms lên lớp 8

sorry a trai nhìu nhìu

1 tháng 6 2019

đặt A=\(\frac{1}{x\left(x+1\right)}\) +\(\frac{1}{y\left(y+1\right)}\) +\(\frac{1}{z\left(z+1\right)}\)=\(\frac{1}{x}\)-\(\frac{1}{x+1}\)+\(\frac{1}{y}\)-\(\frac{1}{y+1}\)+\(\frac{1}{z}\)-\(\frac{1}{z+1}\)

Áp dụng BĐT phụ \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\) (bạn tự chứng minh nha,quy đồng ,nhân chéo ,chuyển về )⇒\(\frac{1}{a+b}\)\(\frac{1}{4}\)(\(\frac{1}{a}\)+\(\frac{1}{b}\))

⇒A≥\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)-\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)+3)

⇒A≥\(\frac{3}{4}\) (\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))-\(\frac{3}{4}\)\(\frac{3}{4}\) (\(\frac{9}{x+y+z}\))-\(\frac{3}{4}\)

⇒a≥\(\frac{9}{4}\)-\(\frac{3}{4}\)=\(\frac{3}{2}\) dpcm

1 tháng 6 2019

dấu bằng xảy ra⇔x=y=z=1

7 tháng 3 2021

Dễ dàng chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)

Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)(3)

Chứng mih tương tự, ta được;

\(y+z\ge2\sqrt{yz}\)(4);

\(z+x\ge2\sqrt{zx}\)(5)

Từ (3), (4), (5), ta được:

\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)

7 tháng 3 2021

Mà theo đề bài, \(x+y+z\ge3\) nên:

\(\frac{x+y+z}{2}\ge\frac{3}{2}\)

Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)

Từ (2) và (6), ta được:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

25 tháng 5 2017

1.

Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:

         \(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

tương tự, ta có:

         \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)

         \(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)

Cộng theo vế của 3 BĐT trên, ta được:

     \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)        (ĐPCM)

ý b nghĩ đã ~.~

25 tháng 5 2017

2. 

P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)

Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!

22 tháng 5 2017

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2019

Lời giải:
Áp dụng BĐT AM-GM ta có:

\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)

\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)

Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Cauchy-Schwarz:

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)

\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)

\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)

Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)

Do đó \(\text{VT}\geq \text{VP}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$


18 tháng 3 2018

1 slot tối làm cho :))

Bài này trích trong đề thi HSG Toán 9 tỉnh Thanh Hóa

18 tháng 3 2018

Như đã hứa,giờ làm cho :))

BĐT\(\Leftrightarrow\frac{xz}{y^2+yz}+\frac{y}{xz+yz}+\frac{z}{x+z}\ge\frac{3}{2}\).Đặt \(\frac{x}{y}=a>0;\frac{y}{z}=b>0\)\(\Rightarrow ab=\frac{x}{z}\ge1\)

Ta có BĐT:\(\frac{1}{\frac{y^2}{xz}+\frac{y}{x}}+\frac{1}{\frac{xz}{y^2}+\frac{z}{y}}+\frac{1}{1+\frac{x}{z}}\ge\frac{3}{2}\)

\(\Rightarrow\frac{1}{\frac{b}{a}+\frac{1}{a}}+\frac{1}{\frac{a}{b}+\frac{1}{b}}+\frac{1}{ab+1}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{a}{b+1}+\frac{b}{a+1}+\frac{1}{ab+1}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a^2}{ab+a}+\frac{b^2}{ab+b}+\frac{1}{ab+1}\ge\frac{3}{2}\).Áp dụng BĐT Bunhiacopxki mở rộng ta có:

\(\frac{a^2}{ab+a}+\frac{b^2}{ab+b}\ge\frac{\left(a+b\right)^2}{2ab+a+b}\).Ta cần chứng minh:\(\frac{\left(a+b\right)^2}{2ab+a+b}\ge\frac{2\left(a+b\right)}{a+b+2}\)(*).Thật vậy:

(*)\(\Rightarrow\frac{a+b}{2ab+a+b}\ge\frac{2}{a+b+2}\Leftrightarrow\left(a+b\right)\left(a+b+2\right)\ge2\left(2ab+a+b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Nên \(\frac{a^2}{ab+a}+\frac{b^2}{ab+b}+\frac{1}{ab+1}\ge\frac{2\left(a+b\right)}{a+b+2}+\frac{1}{ab+1}\)\(\ge\frac{2\left(a+b\right)}{a+b+2}+\frac{4}{4+\left(a+b\right)^2}\)

Đặt \(m=a+b\ge2\sqrt{ab}\ge2\).Ta cần chứng minh:\(\frac{2m}{m+2}+\frac{4}{4+m^2}\ge\frac{3}{2}\)(**).Thật vậy

(**)\(\Leftrightarrow\frac{2m}{m+2}+\frac{3m^2+4}{2m^2+8}\ge0\)\(\Leftrightarrow\frac{2m\left(2m^2+8\right)-\left(m+2\right)\left(3m^2+4\right)}{\left(m+2\right)\left(2m^2+8\right)}\ge0\)

\(\Leftrightarrow\frac{\left(m-2\right)^3}{\left(m+2\right)\left(2m^2+8\right)}\ge0\) đúng với mọi \(m\ge2\)

Vậy BĐT đã được chứng minh.Dấu "=" xảy ra khi chỉ khi x=y=z

18 tháng 12 2016

Vì x,y,z là các số dương nên ta áp dụng BĐT Cauchy được : 

\(\frac{x^3}{y^2}+y+y\ge3.\sqrt[3]{\frac{x^3}{y^2}.y.y}=3x\)

Tương tự : \(\frac{y^3}{z^2}+2z\ge3y\) ; \(\frac{z^3}{x^2}+2x\ge3z\)

Cộng theo vế được \(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+2\left(x+y+z\right)\ge3\left(x+y+z\right)\)

\(\Leftrightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\)

18 tháng 12 2016

Sửa lại dòng 3 một chút nhé