Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{1}{2}\left[\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\)
\(\ge\frac{1}{2}\left[\left(x+y\right)+\frac{4}{x+y}\right]^2=\frac{1}{2}\left(1+4\right)^2=\frac{25}{2}\)
Dấu "=" xảy ra <=> x = y =1/2
Vậy GTNN của A = 25/2 tại x = y = 1/2
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2\)
\(=4+\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\ge4+\frac{\left(x+y\right)^2}{2}+2\sqrt{\frac{1}{\left(xy\right)^2}}\)
\(=4+\frac{1}{2}+\frac{2}{xy}\ge4+\frac{1}{2}+\frac{2}{\frac{\left(x+y\right)^2}{4}}=4+\frac{1}{2}+8=\frac{25}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)
Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)
Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x = y = 1/2
Vậy MinA = 18
Chứng minh BĐT phụ:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Giờ thì chứng minh thôi:3
Áp dụng BĐT Cauchy-schwarz dạng engel ta có:
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)
Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)
=> Min P=18
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Sửa đề z^4(z-y) thành z^4(x-y)
Đặt \(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(=x^4\left(y-x+x-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(=-x^4\left(x-y\right)+x^4\left(x-z\right)-y^4\left(x-z\right)+z^4\left(x-y\right)\)
\(=\left(x-y\right)\left(z^4-x^4\right)+\left(x-z\right)\left(x^4-y^4\right)\)
\(=\left(x-y\right)\left(z^2+x^2\right)\left(z^2-x^2\right)+\left(x-z\right)\left(x^2+y^2\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(z^2+x^2\right)\left(x+z\right)\left(z-x\right)+\left(x-z\right)\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(z-x\right)\left[\left(z^2+x^2\right)\left(x+z\right)-\left(x^2+y^2\right)\left(x+y\right)\right]\)
\(=\left(x-y\right)\left(z-x\right)\left(xz^2+z^3+x^3+x^2z-x^3-x^2y-xy^2-y^3\right)\)
\(=\left(x-y\right)\left(z-x\right)\left[x^2\left(z-y\right)+x\left(z^2-y^2\right)+\left(z^3-y^3\right)\right]\)
\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\left[x^2+x\left(z+y\right)+\left(z^2+yz+y^2\right)\right]\)
\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(x^2+xz+xy+z^2+yz+y^2\right)\)
\(=\frac{1}{2}\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(2x^2+2y^2+2z^2+2xy+2yz+2xz\right)\)
\(=\frac{1}{2}\left(x-y\right)\left(x-z\right)\left(y-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)
Vì \(x>y>z\Rightarrow\hept{\begin{cases}x-y>0\\x-z>0\\y-z>0\end{cases}}\) và \(\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\ge0\)
=>....
CÁI NÀY mk lm rồi
x^2+2xy+y^2=10
x^2+y^2=10-2xy