K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)

\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}\)

\(=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{2}.\sqrt{2^2-2}=2\)

\(y=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{\frac{2}{3}(9\sqrt{2}-6\sqrt{3}+3\sqrt{5})}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{2}{3}\)

Do đó:

\(E=\frac{1+xy}{x+y}-\frac{1-xy}{x-y}=\frac{1+\frac{4}{3}}{2+\frac{2}{3}}-\frac{1-\frac{4}{3}}{2-\frac{2}{3}}=\frac{9}{8}\)

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

2 tháng 9 2018

\(x=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\dfrac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{3}+1}+\dfrac{2-\sqrt{3}}{2-\sqrt{3}+1}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{3+\sqrt{3}}+\dfrac{2-\sqrt{3}}{3-\sqrt{3}}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(3+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{9-3}\)

\(\dfrac{x}{\sqrt{2}}=\dfrac{3+\sqrt{3}+3-\sqrt{3}}{6}=\dfrac{6}{6}=1\)

\(x=\sqrt{2}\)

\(y=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(y\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)

\(y\sqrt{2}=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(y\sqrt{2}=\sqrt{7}+1-\sqrt{7}+1\)

\(y\sqrt{2}=2\)

\(y=\dfrac{2}{\sqrt{2}}\)

Thay \(x=\sqrt{2},y=\dfrac{2}{\sqrt{2}}\) vào A ta có:

\(A=\dfrac{\sqrt{2}.\dfrac{2}{\sqrt{2}}-1}{\sqrt{2}+\dfrac{2}{\sqrt{2}}}-\dfrac{1-\sqrt{2}.\dfrac{2}{\sqrt{2}}}{2\sqrt{2}-\dfrac{2}{\sqrt{2}}}\)

\(=\dfrac{2-1}{2\sqrt{2}}-\dfrac{1-2}{\sqrt{2}}\)

\(=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{\sqrt{2}}\)

\(=\dfrac{3\sqrt{2}}{4}\)

Tự kết luận nha

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}\)

\(=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}\)

\(=\sqrt{2}.\sqrt{2^2-2}=\sqrt{2}.\sqrt{2}=2\)

\(y=\frac{3.2\sqrt{2}-2.2\sqrt{3}+2\sqrt{5}}{3.3\sqrt{2}-2.3\sqrt{3}+3\sqrt{5}}=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)

\(=\frac{2(3\sqrt{2}-2\sqrt{3}+\sqrt{5})}{3(3\sqrt{2}-2\sqrt{3}+\sqrt{5})}=\frac{2}{3}\)

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được. a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\) bài 2: tính giá trị các biểu thức sau: a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b)...
Đọc tiếp

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.

a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)

d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)

bài 2: tính giá trị các biểu thức sau:

a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)

c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)

bài 3: thực hiện phép tính.

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)

c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

bài 4: thực hiện các phép tính sau.

a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)

c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)

bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)

b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)

bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

2
7 tháng 8 2018

mn ơi giải giúp mik bài não cũng đc a

mình cảm ơn mn nhiều ạ =))

7 tháng 8 2018

tớ nghĩ tớ giải đc 1-2 bài gì đó nhưng tớ ko bít bấm can lm sao giải cho cậu đc

6 tháng 8 2018

ta có : \(A=\dfrac{x+y-2\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-\sqrt{y}-\sqrt{x}=-\sqrt{y}\)

ta có \(B=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)