Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)
Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Rightarrow2012\le x+y+2016\le2014\)
Vậy ta có :
+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)
+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
cho x y thỏa mãn \(x^2+2xy+6x+6y+2y^2+8=0\)
tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+2016
Ta có
x2 + 2y2 + 2xy + 7x + 7y + 10 = 0
<=> (x + y)2 + 2(x + y) + 1 + 5(x + y + 1) + y2 + 4 = 0
<=> (x + y + 1)2 + 5(x + y + 1) + y2 + 4 = 0
<=> A2 + 5A + y2 + 4 = 0
<=> y2 = - 4 - 5A - A2 \(\ge0\)
<=> \(-4\le A\le-1\)
Vậy GTLN là -1, GTBN là - 4
\(x^2+y^2+9+2xy+6x+6y+y^2-1=0\)
\(\Leftrightarrow\left(x+y+3\right)^2+y^2-1=0\Leftrightarrow\left(x+y+3\right)^2=1-y^2\le1\)
\(\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow-1+2013\le x+y+2016\le1+2013\)
\(\Rightarrow2012\le B\le2014\)
\(\Rightarrow B_{min}=2012\) khi \(\left\{{}\begin{matrix}1-y^2=1\\x+y+3=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\x=-4\end{matrix}\right.\)
\(B_{max}=2014\) khi \(\left\{{}\begin{matrix}1-y^2=1\\x+y+3=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\x=-2\end{matrix}\right.\)