K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

10 tháng 6 2017

Theo bài ra :

\(\dfrac{x^2-yz}{x\left(1-yz\right)}=\dfrac{y^2-xz}{y\left(1-xz\right)}\)

\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)

\(\Leftrightarrow x^2y-x^3yz-y^2z+xx^2z^2=xy^2-xy^3z-x^2z+x^2yz^2=0\)

\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)+xyz^2\left(x-x\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right)\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(xy+xz+yz-xyz\left(x+y+z\right)\right)=0\)

Mà theo đề bài :

\(x\ne y\Rightarrow xy+xz+yz-xyz\left(x+y+z\right)=0\)

\(\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{xy}{xyz}+\dfrac{xz}{xyz}+\dfrac{yz}{xyz}=\dfrac{xyz\left(z+y+x\right)}{xyz}\)

\(\Leftrightarrow\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}=x+y+z\left(đpcm\right)\)

24 tháng 12 2017

Hỏi đáp ToánHỏi đáp Toán