Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bdt cosi-schwar cho 3 số (\(\left(am+bn+cp\right)^2\le\left(a^2+b^2+c^2\right)\)\(\left(m^2+n^2+p^2\right)\)
với a=x,b=y\(\sqrt{2}\);c=z\(\sqrt{5}\); m=\(\sqrt{11-2y^2},n=\sqrt{3-5z^2}\),\(p=\sqrt{2-x^2}\)
82\(\le\left(x^2+2y^2+5z^2\right)\left(11-2y^2+3-5z^2+1-x^2\right)\) <=>64\(\le P\left(16-P\right)\)
<=>P2-16P+64\(\le0< =>\left(P-8\right)^2\le0\) <=>P=8
\(1,a+b\le\sqrt{2\left(a^2+b^2\right)}\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(LuonĐung\right)\)
dấu "=" khi a = b
2, ĐKXĐ: x > 1 ; y > 2
Áp dụng bđt Bunhiacopxki
\(S=\sqrt{x-1}+\sqrt{y-2}\le\sqrt{\left(1+1\right)\left(x-1+y-2\right)}\)
\(=\sqrt{2\left(4-3\right)}=\sqrt{2}\)
\("="\Leftrightarrow\hept{\begin{cases}x-1=y-2\\x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{5}{2}\end{cases}}\left(TmĐKXĐ\right)\)
Đặt \(\left\{{}\begin{matrix}x+1=a>0\\y+1=b>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)-2\left(b-1\right)\ge1\)
\(\Rightarrow a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(A=\dfrac{\left(x+1\right)^2+\left(y+1\right)^2}{\left(x+1\right)\left(y+1\right)}=\dfrac{a^2+b^2}{ab}=\dfrac{a}{b}+\dfrac{b}{a}\)
\(A=\left(\dfrac{a}{4b}+\dfrac{b}{a}\right)+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\) hay \(x+1=2\left(y+1\right)\)
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
- \(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy=16x^2y^2+12\left(x^3+y^3\right)+34xy\)
\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)
\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)
\(=16x^2y^2-2xy+12\)
Đặt \(t=xy\) thì \(B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)
Vậy min B \(=\frac{191}{16}\) khi \(\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)
- Như trên ta có : \(B=16\left(xy-\frac{1}{16}\right)^2+\frac{191}{16}\)
Mặt khác, áp dụng BĐT Cauchy , ta có : \(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)
Suy ra : \(B\le16\left(\frac{1}{4}-\frac{1}{16}\right)^2+\frac{191}{16}=\frac{25}{2}\)
Đẳng thức xảy ra khi x = y = 1/2
Vậy max B = 25/2 khi (x;y) = (1/2;1/2)
Lời giải:
Áp dụng BĐT AM-GM:
$2A=2x^2y^2(x^2+y^2)=xy.[2xy(x^2+y^2)]\leq \left(\frac{x+y}{2}\right)^2.\left(\frac{2xy+x^2+y^2}{2}\right)^2$
$\Leftrightarrow 2A\leq \frac{(x+y)^6}{16}=\frac{1}{16}$
$\Rightarrow A\leq \frac{1}{32}$
Vậy $A_{\max}=\frac{1}{32}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$