K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}=\frac{bc\left(b-c\right)+ca\left(c-a\right)+ab\left(a-b\right)}{abc}\)

\(=\frac{b^2c-bc^2+ca\left(c-a\right)+a^2b-ab^2}{abc}=\frac{b^2\left(c-a\right)+ca\left(c-a\right)-b\left(c^2-a^2\right)}{abc}\)
\(=\frac{\left(c-a\right)\left(b^2+ca\right)-b\left(c-a\right)\left(c+a\right)}{abc}=\frac{\left(c-a\right)\left(b^2+ca-bc-ba\right)}{abc}\)

\(=\frac{\left(c-a\right)\left(b-a\right)\left(b-c\right)}{abc}=-\frac{\left(b-c\right)\left(c-a\right)\left(a-b\right)}{abc}=-\frac{1}{xyz}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{-1}{xyz}\Leftrightarrow xy+yz+zx=-1\)

20 tháng 9 2020

\(xy+yz+zx=\frac{a}{b-c}.\frac{b}{c-a}+\frac{b}{c-a}.\frac{c}{a-b}+\frac{c}{a-b}.\frac{a}{b-c}\)\(=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{a^2b-ab^2+b^2c-bc^2+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{b\left(a^2-c^2\right)+b^2\left(c-a\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{\left(c-a\right)\left(b^2+ca-ab-bc\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(c-a\right)\left(b\left(b-a\right)+c\left(a-b\right)\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(a-b\right)\left(c-b\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)

20 tháng 10 2017

vì có 1 chút nhầm lẫn nên giờ mk mới ra mong bạn thứ lỗi

bài 1

\(\Leftrightarrow\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2c^2b^2}+\frac{4c^4}{2c^3+2a^2c^2}\)

\(\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(\ge\frac{36}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=3\ge a+b+c\)

Dấu bằng xảy ra khi \(a=b=c=1\)

26 tháng 4 2020

Bài 2 là chuyên Bình Thuận, 2016-2017

Áp dụng bất đẳng thức Cauchy – Schwarz, ta có:

\(\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Tương tự: \(\frac{yz}{y^2+zx+xy}\le\frac{xy\left(z^2+zx+xy\right)}{\left(xy+yz+zx\right)^2}\);\(\frac{zx}{z^2+xy+yz}\le\frac{zx\left(x^2+xy+yz\right)}{\left(xy+yz+zx\right)^2}\)

Cộng từng vế của 3 BĐT trên. ta được:

\(VT\le\frac{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}{\left(xy+yz+zx\right)^2}=\frac{x^2+y^2+z^2}{xy+yz+zx}\)

Đẳng thức xảy ra khi x = y = z

25 tháng 11 2019
https://i.imgur.com/OrspMQU.jpg
NV
25 tháng 11 2019

\(\frac{xy}{z}+\frac{yz}{x}\ge2y\) ; \(\frac{xy}{z}+\frac{zx}{y}\ge2x\); \(\frac{yz}{x}+\frac{zx}{y}\ge2z\)

Cộng vế với vế:

\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

8 tháng 3 2018

        \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)

\(\Leftrightarrow\)\(\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\)

\(\Leftrightarrow\)\(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-zx\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}=\frac{ab}{\left(x^2-yz\right)\left(y^2-zx\right)}=\frac{bc}{\left(y^2-zx\right)\left(z^2-xy\right)}=\frac{ca}{\left(z^2-xy\right)\left(x^2-yz\right)}\left(1\right)\)

Áp dụng tính chất tỉ lệ thức ta có:

\(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right)\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right)\left(z^2-xy\right)}=\frac{a^2-bc}{x\left(x^3+y^3+z^3-3xyz\right)}\)   (2)

\(\frac{b^2}{\left(y^2-zx\right)^2}=\frac{ac}{\left(x^2-yz\right)\left(z^2-xy\right)}=\frac{b^2-ac}{\left(y^2-zx\right)^2-\left(x^2-yz\right)\left(z^2-xy\right)}=\frac{b^2-ca}{y\left(x^3+y^3+z^3-3xyz\right)}\)   (3)

\(\frac{c^2}{\left(z^2-xy\right)}=\frac{ab}{\left(x^2-yz\right)\left(y^2-xz\right)}=\frac{c^2-ab}{\left(z^2-xy\right)-\left(x^2-yz\right)\left(y^2-xz\right)}=\frac{c^2-ab}{z\left(x^3+y^3+z^3-3xyz\right)}\)     (4)

Từ  (1),  (2), (3), (4)   suy ra:

\(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)

P/S: mk mới lớp 8 nên cx ko bít lm đúng hay sai, bn tham khảo thôi nhé

22 tháng 10 2016

Đặt \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}=k\)

\(\Rightarrow\begin{cases}a=\frac{x^2-yz}{k}\\b=\frac{y^2-zx}{k}\\c=\frac{z^2-xy}{k}\end{cases}\)

Ta có:

\(\frac{a^2-bc}{x}=\frac{\left(\frac{x^2-yz}{k}\right)^2-\frac{y^2-zx}{k}.\frac{z^2-xy}{k}}{x}=\frac{\frac{x^4-2x^2yz+\left(yz\right)^2}{k^2}-\frac{\left(y^2-zx\right).\left(z^2-xy\right)}{k^2}}{x}\)

\(=\frac{\frac{\left(x^4-2x^2yz+y^2z^2\right)-\left(y^2z^2-z^3x-xy^3+x^2zy\right)}{k^2}}{x}\)

\(=\frac{\frac{x^4-2x^2yz+y^2z^2-y^2z^2+z^3x+xy^3-x^2zy}{k^2}}{x}=\frac{x^4++z^3x+xy^3-3x^2yz}{k^2}.\frac{1}{x}=\frac{x^3+y^3+z^3-3xyz}{k^2}\)

Tương tự thay a;b;c vào \(\frac{b^2-ca}{y};\frac{c^2-ab}{z}\) ta cũng được \(\frac{b^2-ca}{y}=\frac{c^2-ab}{z}=\frac{x^3+y^3+z^3-3xyz}{k^2}\)

Vậy \(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)

 

NV
9 tháng 3 2020

a/ \(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}\right)^2}{2\sqrt{a}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)^2}{2\sqrt{b}}+\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\sqrt{c}}\)

\(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}+\sqrt{c}+\sqrt{a}+\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(VT=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\)

\(VT\le\sum\frac{x}{x+\sqrt{xz}+\sqrt{xy}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 3 2020

Bài 1 :

Áp dụng BĐT Cô - si cho 2 số không âm ta có :

\(VT=\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\Sigma_{cyc}\sqrt{\frac{bc}{a}}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

15 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\sqrt[3]{yz}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{x}{\frac{y+z+1}{3}}=\frac{3x}{y+z+1}\)

Tương tự rồi cộng lại ta có:

\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)

\(=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)\)

\(\ge\frac{3\left(x^4+y^4+z^4\right)}{2\left(xy+yz+xz\right)+x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}\)

\(=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Đẳng thức xảy ra khi \(x=y=z=1\)

4 tháng 10 2019

Áp dụng BĐT AM-GM ta có:

\sqrt[3]{yz}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{x}{\frac{y+z+1}{3}}=\frac{3x}{y+z+1}3yz​≤3y+z+1​⇒3yzx​≥3y+z+1​x​=y+z+13x

Tương tự rồi cộng lại ta có:

VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)VT≥3(y+z+1x​+x+z+1y​+x+y+1z​)

=3\left(\frac{x^2}{xy+yz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{yz+xz+z}\right)=3(xy+yz+xx2​+xy+yz+yy2​+yz+xz+zz2​)

\ge\frac{3\left(x^4+y^4+z^4\right)}{2\left(xy+yz+xz\right)+x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}≥2(xy+yz+xz)+x+y+z3(x4+y4+z4)​≥x2+y2+z2(x2+y2+z2)2​

=x^2+y^2+z^2\ge xy+yz+xz=VP=x2+y2+z2≥xy+yz+xz=VP

Đẳng thức xảy ra khi x=y=z=1x=y=z=1