K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Ta có \(x^2-y^2-z^2=0\Rightarrow z^2=x^2-y^2\)

Có \(VT=\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-\left(4z\right)^2\)\(=\left(5x-3y\right)^2-16z^2=\left(5x-3y\right)^2-16\left(x^2-y^2\right)\)

\(=25x^2-30xy+9y^2-16x^2+16y^2=9x^2-30xy+25y^2\)

\(=\left(3x\right)^2-2.3x.5y+\left(5y\right)^2=\left(3x-5y\right)^2=VP\left(đpcm\right)\)

\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)

\(\Rightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)

\(\Rightarrow\left(5x-3y\right)-16z^2-\left(3x-5y\right)^2=0\)

\(\Rightarrow25x^2-30xy+9y^2-16z^2-\left(9x^2-30xy+25y^2\right)=0\)

\(\Rightarrow25x^2-30xy+9y^2-16z^2-9x^2+30xy-25y^2=0\)

\(\Rightarrow25\left(x^2-y^2\right)+9\left(x^2-y^2\right)-16z^2=0\)

\(\Rightarrow34\left(x^2-y^2\right)-16z^2=0\)

23 tháng 7 2016

câu o0o trả lời là sai

6 tháng 1 2018

Ta có:

\(x^2-y^2-z^2=0\)

\(16x^2-16y^2-16z^2=0\)

\(25x^2-9x^2+9y^2-25y^2-16z^2+30xy-30xy=0\)

\(\left(5x-3y\right)^2-16z^2= \left(3x-5y\right)^2\)

\(\left(5x-3y-4z\right)\left(5x-3y+4z\right)=\left(3x-5y\right)^2\)

12 tháng 1 2019

a) Đề sai nha bạn :) mấy dấu cộng bạn phỉa chuyển thành dấu nhân nhé

\(A=\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)

\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)

\(A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)

\(A=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)

\(A=2^{512}-1+1\)

\(A=2^{512}\)

12 tháng 1 2019

b . ( 5x - 3y + 4z )( 5x - 3y - 4z ) = ( 5x - 3y )^2 - ( 4z )^2 = 25x^2 - 30xy + 9y^2 - 16z^2 = 25( y^2 + z^2 ) - 30xy + 9y^2 - 16z^2 = 9z^2 + 34y^2 - 30xy ( 1 )

      ( 3x - 5y )^2 = 9x^2 - 30xy + 25y^2 = 9( y^2 + z^2 ) - 30xy + 25y^2 = 34y^2 + 9z^2 - 30xy ( 2 )

Tu ( 1 ) va ( 2 ) => dpcm

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

14 tháng 8 2015

Vì \(x^2-y^2-z^2=0\Rightarrow x^2-y^2=z^2\)

Biến đổi vế trái ta có :

 \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)

\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=25x^2-30xy+9y^2-16x^2+16y^2\)

\(=9x^2-30xy+25y^2\)

\(=\left(3x-5y\right)^2\)  ( ĐPCM) 

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Ta có:

\(\frac{x}{1+x^2}+\frac{18y}{1+y^2}+\frac{4z}{1+z^2}=xyz\left(\frac{1}{yz\left(1+x^2\right)}+\frac{18}{xz\left(1+y^2\right)}+\frac{4}{xy\left(1+z^2\right)}\right)\)

                                                         \(=xyz\left(\frac{1}{yz+x\left(x+y+z\right)}+\frac{18}{xz+y\left(x+y+z\right)}+\frac{4}{xy+z\left(x+y+z\right)}\right)\)

                                                          \(=xyz\left(\frac{1}{\left(x+y\right).\left(x+z\right)}+\frac{18}{\left(y+x\right).\left(y+z\right)}+\frac{4}{\left(z+x\right).\left(z+y\right)}\right)\)

                                                           \(=xyz.\frac{\left(z+y\right)+18.\left(x+z\right)+4\left(x+y\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)

                                                           \(=\frac{xyz\left(22x+5y+19z\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)(đpcm)

8 tháng 7 2017

Ta có : \(\left(5x+5y+5z\right)^2-\left(25xy+25yz+25zx\right)\)

\(=25\left(\left(x+y+z\right)^2-\left(xy+yz+zx\right)\right)\)

Xét : \(\left(x+y+z\right)^2-\left(xy+yz+zx\right)=0\)

\(=>x^2+y^2+z^2+2xy+2yz+2zx-xy-yz-zx=0\)

\(=>x^2+y^2+z^2+xy+yz+zx=0\)

Nhân biểu thức với 2 ta được:

\(2x^2+2y^2+2z^2+2xy+2yz+2zx=0\)

\(=>\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2=0\)

\(=>x+y=y+z=z+x=0\)

Vạy để phân thức A xác định thì x,y,z không đồng thời bằng 0;

CHÚC BẠN HỌC TỐT...