Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta AOD\)và \(\Delta COB\)
\(OA=OC\left(gt\right)\)
\(AOD=COB\left(=90-DOC\right)\)
\(OD=OB\left(gt\right)\)
\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\Rightarrow ADO=CBO\left(1\right)\)
Gọi giao điểm của BF và OD là M
\(\)Ta có \(FMD=OMB\left(2\right)\)(đối đỉnh)
\(\left(1\right)\left(2\right)\Rightarrow ADO+FMD=OMB+CBO\Rightarrow FDM+FMD=MBO+OMB\)
\(\Rightarrow180-MFD=180-MOB=180-90\left(MOB=DOB=90\right)\Rightarrow MFD=90\)
Vậy \(BF\perp AD\)
O x y z t A B C D F 1 2 3 E
Gọi E là giao điểm của Oy và AD
Ta có: \(\widehat{O_1}+\widehat{O_2}=\widehat{COB}\)(do tia OA nằm giữa hai tia OC và OB)
\(\widehat{O_3}+\widehat{O_2}=\widehat{AOD}\)(do tia OB nằm giữa hai tia OA và OD)
Mà \(\widehat{O_1}=\widehat{O_3}=90^o\)(do \(Oz\perp Ox,Ot\perp Oy\))
Do đó: \(\widehat{COB}=\widehat{AOD}\)
\(\Delta AOD\)và \(\Delta COB\)có:
\(\widehat{COB}=\widehat{AOD}\)(c.m.t)
OA = OC (theo gt)
OB = OD (theo gt)
Do đó: \(\Delta AOD\)=\(\Delta COB\)(c.g.c)
\(\Delta FBE\) có: \(\widehat{EFB}+\widehat{FEB}+\widehat{FBE}=180^o\)(theo định lí tổng ba góc của một tam giác)
\(\Delta OED\) có: \(\widehat{O_3}+\widehat{ODE}+\widehat{OED}=180^o\)(theo định lí tổng ba góc của một tam giác)
Mà \(\widehat{FBE}=\widehat{ODE}\) (do \(\Delta COB\)= \(\Delta AOD\))
\(\widehat{FEB}=\widehat{OED}\)(2 góc đối đỉnh)
Suy ra: \(\widehat{EFB}=\widehat{O_3}\)
Mà \(\widehat{O_3}=90^o\)(do \(Oy\perp Ot\))
Do đó: \(\widehat{EFB}=90^o\)nên \(BF\perp FA\)
mik nha, mik mất công làm lắm đó! ^_^
Ta có hình vẽ sau:
O x y M
a) Xét \(\Delta OMB\)và \(\Delta OMA:\)
OM: cạnh chung
OB=OA(gt)
\(\widehat{OBM}=\widehat{OAM}=90^o\)
\(\Rightarrow\Delta OMB=\Delta OMA\left(ch-cgv\right)\)
=> MB=MA( 2 cạnh tương ứng)
=> Đpcm
b) Ta có: \(\Delta OMB=\Delta OMA\)(cm câu a)
=> \(\widehat{BOM}=\widehat{AOM}\)(2 góc tương ứng)
=> OM là tia phân giác của \(\widehat{xOy}\)
a, Vì Oz là tia phân giác của xOy
=> xOz = zOy = xOy/2 = 60o/2 = 30o
b, Xét △OIA và △ OIB
Có: OA = OB
AOI = IOB
OT là cạnh chung
=> △OIA = △OIB (c.g.c)
c, Vì △OIA = △OIB
=> AIO = OIB (2 góc tương ứng)
Mà AIO + OIB = 180o (2 góc kề bù)
=> AIO = OIB = 90o
=> OI vuông góc AB
Hình dễ tự vẽ
a ) Oz là tia p/g của góc xOy => \(\widehat{xOz}=\widehat{zOy}=\frac{1}{2}.\widehat{xOy}=30^o\)
=> góc zOy = 30 độ
b ) Xét tam giác OIA và tam giác OIB có :
OA = OB ( gt )
\(\widehat{xOz}=\widehat{zOy}\)( Oz là tia p/g của góc xOy )
OI là cạnh chung
=> Tam giác OIA = Tam giác OIB ( c.g.c )
b ) Do tam giác OIA = tam giác OIB ( cm trên ) => \(\widehat{OIA}=\widehat{OIB}\)
Ta có :
\(\widehat{OIA}+\widehat{OIB}=180^o\)( hai góc kề bù )
\(\widehat{OIA}+\widehat{OIA}=180^o\)
\(\widehat{OIA}.2=180^o\)
=> \(\widehat{OIA}=90^o\)
=> OI vuông góc với AB
O x y z A E B F C
Vẽ hình hơi xấu - thông cảm
a) Xét \(\Delta\) OAB và \(\Delta\) OAC có :
góc B = góc C = 90o
góc xOz = góc yOz ( Oz là p/giác của góc xOy )
OA chung
\(\Rightarrow\Delta OAB=\Delta OAC\) ( c.huyền - g.nhọn )
\(\Rightarrow AB=AC\) ( 2 cạnh t/ứng )
Hoàng Thị Ngọc AnhNguyễn Huy TúAkai HarumaHoang Hung Quansoyeon_Tiểubàng giảiTrần Việt Linh giúp mình câu b,c đi