K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

ĐKXĐ:\(x\ge0;y\ge1;z\ge2\)

\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\)

\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1+2\sqrt{y-1}+1\right)+\left(z-2+2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-2\right)^2=0\)

\(\left\{\begin{matrix}\left(\sqrt{x-1}-1\right)^2\ge0\\\left(\sqrt{y-1}-1\right)^2\ge0\\\left(\sqrt{z-2}-2\right)^2\ge0\end{matrix}\right.\)\(\forall x;y;z\)

\(\Rightarrow\left\{\begin{matrix}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-1}-1\right)^2=0\\\left(\sqrt{z-2}-2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-1}-1=0\\\sqrt{z-2}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x-1=1\\y-1=1\\z-2=4\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=2\\y=2\\z=6\end{matrix}\right.\)

=> x02 + y02 + z02 = 22 + 22 + 62 = 44

24 tháng 3 2017

giao điểm (d1) ;và (d2) thỏa he :\(\left\{{}\begin{matrix}2x+my+m+1=0\\\left(m+1\right)x+y+2m=0\end{matrix}\right.\)(I)

\(\Rightarrow\)(I) có nghiệm khi \(m^2+m-2\ne0\Leftrightarrow m\ne1;m\ne-2\)(\(\circledast\))

nghiệm của(I) \(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+2}=2-\dfrac{3}{m+2}\left(1\right)\\y=\dfrac{m-1}{m+2}=1-\dfrac{3}{m+2}\left(2\right)\end{matrix}\right.\)

​lấy về trừ theo về cửa (1) chờ (2) tá dược: x-y = 1

​vậy giao điểm của d1 va d2 luôn di động trên đường thẳng : x -y -1 = 0

24 tháng 3 2017

dạ cho em hỏi chị ghi lấy về trừ theo .......đến cuối là sao ạ

\(A=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{\left(-\dfrac{5}{\sqrt{3}}\right)^2-4\cdot\dfrac{-\sqrt{2}}{\sqrt{3}}}=\sqrt{\dfrac{25+4\sqrt{6}}{3}}\)

20 tháng 8 2016

Ta có : \(\begin{cases}x^2+y^2=5\\x^4-x^2y^2+y^4=13\end{cases}\) . Đặt \(a=x^2+y^2,b=x^2y^2\)

Suy ra : \(\begin{cases}a=5\\a^2-3b=13\end{cases}\) \(\Leftrightarrow\begin{cases}a=5\\b=4\end{cases}\)

Ta có hệ : \(\begin{cases}x^2+y^2=5\\x^2y^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x^2+y^2=5\\xy=2\end{cases}\) (I)hoặc \(\begin{cases}x^2+y^2=5\\xy=-2\end{cases}\) (II)

 Lại đặt \(\begin{cases}m=x+y\\n=xy\end{cases}\) . Giải hệ (I) : \(\begin{cases}m^2-2n=5\\n=2\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm3\\n=2\end{cases}\)

Tới đây bạn tự giải bằng phương pháp thế.

Giải hệ (II) : \(\begin{cases}m^2-2n=5\\n=-2\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm1\\n=-2\end{cases}\)

Tới đây bạn tự giải bằng pp thế.

 

20 tháng 8 2016

Cái này phải có trường hợp chứ nhỉlolang

14 tháng 6 2017

\(VT=\dfrac{1+cos2x}{cos2x}\times\dfrac{1+cos4x}{sin4x}\) (*)

Ta có: theo công thức hạ bậc có: \(cos^2x=\dfrac{1+cos2x}{2}\Leftrightarrow1+cos2x=2cos^2x\) (1)

Ta có: \(cos2x=1-sin^2x\Rightarrow cos4x=1-2sin^22x\) (2)

Tương Tự có \(sin2x=2sinx\times cosx\Rightarrow sin4x=2sin2x\times cos2x\) (3)

Thay (1),(2),(3) vào (*) ta được: \(VT=\dfrac{2cos^2x}{cos2x}\times\dfrac{1+\left(1-2sin^22x\right)}{2sin2x\times cos2x}\)

\(VT=\dfrac{2cos^2x\times2\left(1-sin^22x\right)}{cos^22x\times2sin2x}\)\(1-sin^22x=cos^22x\)

\(\Rightarrow VT=\dfrac{2cos^2x\times cos^22x}{cos^22x\times2sinx\times cosx}=\dfrac{cosx}{sinx}=tanx\left(đpcm\right)\)

14 tháng 6 2017

đoạn cuối nhầm nha \(VT=\dfrac{cosx}{sinx}=cotx\left(đpcm\right)\)

5 tháng 2 2017

lập hệ pt

10 tháng 4 2017

Hỏi đáp Toán

10 tháng 4 2017

Mk ghi lộn đề rùibucminh

bài 110 sgk trang 49 toán lop 6. Xl nháhaha

14 tháng 3 2017

Thay haha= x ; khocroi là y nhé bạn =='.

Theo đề bài ta có :

\(\left\{{}\begin{matrix}x+y=23\\x\cdot y=132\\y-x=1\end{matrix}\right.\left(ĐK:x,y>0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=23-y\\x\cdot y=132\\y-\left(23-y\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=23-y\\x\cdot y=132\\2y=24\Rightarrow y=12\end{matrix}\right.\)

Thay y = 12 vào hai đẳng thức trên ta được :

\(x+12=23\Rightarrow x=11\) hay \(x\cdot12=132\Rightarrow x=11\)

Vậy \(\left\{{}\begin{matrix}x=11\\y=12\end{matrix}\right.\) hay haha\(=11\); khocroi\(=12\).

14 tháng 3 2017

jij

a) -2/3 - 1/3.(2x-5)=3/2
1/3.(2x-5)= -2/3 - 3/2
1/3.(2x-5) = -13/6
2x-5 = -13/6 : 1/3
2x-5 = -13/2
2x = -13/2 + 5 = -3/2
x=-3/2 : 2 = -3/4
Xl pn nh mk chỉ có thể giúp pn câu a thôi
vì nó hơi dài mỏi tay lém nên mk xl nkoa

9 tháng 4 2017

xin lỗi toán lp 6