K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(\sqrt{x+2022}-\sqrt{y+2022}\right)+\left(x^3-y^3\right)=0\)

=>\(\dfrac{x-y}{\sqrt{x+2022}+\sqrt{y+2022}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)

=>x-y=0

=>x=y

P=2x^2-5x^2+x^2+12x+2023

=-2x^2+12x+2023

=-2(x^2-6x-2023/2)

=-2(x^2-6x+9-2041/2)

=-2(x-3)^2+2041<=2041

Dấu = xảy ra khi x=3

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

NV
9 tháng 12 2018

ĐKXĐ: \(x\ge3;y\ge1\)

\(\sqrt{x-3}-\sqrt{y-1}+\sqrt[3]{x^2+x+1}-\sqrt[3]{y^2+5y+7}=0\)

\(\Leftrightarrow\dfrac{x-y-2}{\sqrt{x-3}+\sqrt{y-1}}+\dfrac{x^2+x+1-y^2-5y-7}{\sqrt[3]{\left(x^2+x+1\right)}+\sqrt[3]{\left(x^2+x+1\right)\left(y^2+5y+7\right)}+\sqrt[3]{y^2+5y+7}}=0\)

Để cho gọn gàng, ta đặt:

\(\left\{{}\begin{matrix}\sqrt[3]{\left(x^2+x+1\right)}+\sqrt[3]{\left(x^2+x+1\right)\left(y^2+5y+7\right)}+\sqrt[3]{y^2+5y+7}=b>0\\\sqrt{x-3}+\sqrt{y-1}=a>0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x-y-2}{a}+\dfrac{x^2-y^2-4y-4+x-y-2}{b}=0\)

\(\Leftrightarrow\dfrac{x-y-2}{a}+\dfrac{x^2-\left(y+2\right)^2+\left(x-y-2\right)}{b}=0\)

\(\Leftrightarrow\dfrac{x-y-2}{a}+\dfrac{\left(x-y-2\right)\left(x+y+3\right)}{b}=0\)

\(\Leftrightarrow\left(x-y-2\right)\left(\dfrac{1}{a}+\dfrac{x+y+3}{b}\right)=0\)

\(\Leftrightarrow x-y-2=0\) do \(\left\{{}\begin{matrix}x\ge3\\y\ge1\end{matrix}\right.\) \(\Rightarrow x+y+3>0\Rightarrow\dfrac{1}{a}+\dfrac{x+y+3}{b}>0\)

\(\Rightarrow x=y+2\)

Thay vào Q ta được:

\(Q=y^2-\left(y+2\right)^2+3\left(y+2\right)+4\sqrt{y}+4\)

\(\Rightarrow Q=-y+4\sqrt{y}+6=10-\left(y-4\sqrt{y}+4\right)=10-\left(\sqrt{y}-2\right)^2\le10\)

\(\Rightarrow Q_{max}=10\) khi \(\sqrt{y}-2=0\Rightarrow\left\{{}\begin{matrix}y=4\\x=6\end{matrix}\right.\)

9 tháng 12 2018

Nguyễn Việt Lâm Mashiro Shiina Akai Haruma

13 tháng 5 2021

Đặt \(\sqrt{x};\sqrt{y};\sqrt{z}\rightarrow a,b,c\), ta có : \(a+b+c=1\)

Tìm min của \(A=\frac{ab}{\sqrt{5a^2+32ab+12b^2}}+\frac{bc}{\sqrt{5b^2+32bc+12c^2}}+\frac{ca}{\sqrt{5c^2+32ca+12a^2}}\)

đến đây thấy giống giống bài bất của HN năm nào ấy nhỉ ?