Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)
\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)
Ta có: \(n+\left(n+1\right)>2\sqrt{n\left(n+1\right)}\left(AM-GM\right)\) suy ra:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{1}{\left(2n+1\right).\frac{\left(n+1\right)-n}{\sqrt{n+1}-\sqrt{n}}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}< \frac{1}{2}.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)Áp dụng vào ta có:
\(S_n< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{1}{2}-\frac{1}{2\sqrt{n+1}}< \frac{1}{2}\left(đpcm\right).\)
Bạn bấn vào đây, câu hỏi của bạn có người trả lời rồi Câu hỏi của Lương Ngọc Anh - Toán lớp 9 | Học trực tuyến
chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)
a, Ta có
\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)
mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, áp dụng bđt ta có
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)
\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)
\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..
\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)
\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)
\(a_n=\frac{1}{\left(\sqrt{n+1}+\sqrt{n}\right)\sqrt{n+1}\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{\sqrt{100}}\)
\(a_n=\sqrt{2+\frac{2}{n}+\frac{1}{n^2}}+\sqrt{2-\frac{2}{n}+\frac{1}{n^2}}\)
\(\Rightarrow\frac{1}{a_n}=\frac{1}{4}\left(\sqrt{\left(n+1\right)^2+n^2}-\sqrt{n^2+\left(n-1\right)^2}\right)\)
\(\Rightarrow S=\frac{1}{4}\left(\sqrt{2^2+1}-\sqrt{1^2+0}+\sqrt{3^2+2^2}-\sqrt{2^2+1}+...+\sqrt{21^2+20^2}-\sqrt{20^2+19^2}\right)\)
\(=\frac{1}{4}\left(\sqrt{21^2+20^2}-\sqrt{1}\right)=7\)