Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)
\(\Leftrightarrow\left(16-2x+x^2-9+2x-x^2\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)
\(\Leftrightarrow7=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)
\(\Leftrightarrow\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)
Ta có:
\(\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)=7\)
\(\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)
\(\Leftrightarrow\left(16-2x+x^2-9+2x-x^2\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)
\(\Leftrightarrow7=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)
\(\Leftrightarrow\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)
Ủng hộ nha
\(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)
\(\Leftrightarrow\dfrac{\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)
\(\Leftrightarrow\dfrac{16-2x+x^2-9+2x-x^2}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)
\(\Leftrightarrow\dfrac{7}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\Leftrightarrow\dfrac{7}{A}=1\Rightarrow A=7\)
Có: \(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2+15}-\sqrt{\left(x-1\right)^2+8}=1\)
\(\Leftrightarrow2\left(x-1\right)^2+23-2\sqrt{\left(x-1\right)^4+23\left(x-1\right)^2+120}=1\)
Đặt \(t=\left(x-1\right)^2\left(t\ge0\right)\)
\(\Rightarrow2t+23-2\sqrt{t^2+23t+120}=1\)
\(\Leftrightarrow t+11=\sqrt{t^2+23t+120}\)
\(\Leftrightarrow t^2+22t+121=t^2+23t+120\)
\(\Leftrightarrow t=1\left(TM\right)\)
\(\Rightarrow x\in\left\{0;2\right\}\)
Thay x=0 vào A, ta có:
\(A=\sqrt{16-2.0+0^2}+\sqrt{9-2.0+0^2}=7\)
Thay x=2 vào A, ta có:
\(A=\sqrt{16-2.1+1^2}+\sqrt{9-2.1+1^2}=\sqrt{15}+2\sqrt{2}\)
Ta có \(\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)=16-2x+x^2-\left(9-2x+x^2\right)=16-2x+x^2-9+2x-x=7\Leftrightarrow\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)=7\Leftrightarrow1.A=7\Leftrightarrow A=7\)
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................
a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)
\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)
=> ptvn
d) ĐK : \(x^2+7x+7\ge0\)
Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)
\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)
\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )
\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )
f) ĐK : \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :
\(a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt