Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M,N,P lần lượt là trung điểm các cạnh AB,AC,BC
Do đó diện tích AMN = diện tích BMP = diện tích ANP = \(\frac{1}{4}\) diện tích ABC
Theo nguyên lý di - rich - le thì trong 9 điểm đề bài cho,ít nhất có 3 điểm nằm trong tam giác AMN,BMP hoặc tam giác ANP
Gọi 3 điểm đó là H,I,K
Chẳng hạn 3 điểm H,I,K nằm trong tam giác ANP
= > diện tích HIK < diện tích ANP = \(\frac{1}{4}\) diện tích tam giác ABC
Vậy sẽ có một tam giác nhỏ hơn \(\frac{1}{4}\) diện tích tam giác ABC
Đáp số : Sẽ có một tam giác nhỏ hơn \(\frac{1}{4}\) diện tích tam giác ABC
Với một điểm bất kì trong 6 điểm phân biệt cho trước, ta vẽ được 5 đường thẳng tới các điểm còn lại. Như vậy với 6 điểm, ta vẽ được 5.6 đường thẳng tới các điểm còn lại. Nhưng như vậy một đường thẳng đã được tính 2 lần do đó thực sự chỉ có 5.6 : 2 = 15 ( đường thẳng)
Số đường thẳng đi qua 2 trong 5 điểm đó là:
5.( 5 - 1 ) : 2 = 10 ( đường thẳng)
Gọi số cần tìm là abc, số mới là 1abc.
Ta có 1abc = 9 x abc
<=> 1000 + abc = 9 x abc
<=> 1000 = 8 x abc
<=> abc = 1000 : 8
<=> abc = 125
Gọi số cần tìm là \(\overline{abc}\) (\(0< a\le9\) , \(0\le b,c\le9\))
Theo đề bài : \(\overline{1abc}=9.\overline{abc}\)
\(\Leftrightarrow1000+\overline{abc}=9\overline{abc}\Leftrightarrow8\overline{abc}=1000\Leftrightarrow\overline{abc}=125\)
Vậy số cần tìm là 125
Sơ đồ minh họa:
A B I E D C
\(S_{ABD}=\frac{1}{2}=S_{ABC}\) (1) ( vì chung chiều cao hạ từ \(A\) xuống \(BC\) và có đáy \(BD=\frac{1}{2}BC\) ).
\(S_{BAE}=\frac{1}{2}S_{BAC}\) (2) vì chung chiều cao hạ từ \(B\) xuống \(AC\) và có đáy \(AE=\frac{1}{2}AC\))
Từ (1) và (2) ta có: \(S_{ABD}=S_{BAE}\)
\(S_{BAE}-S_{AIB}=S_{IAE}\); \(S_{ABD}-S_{AIB}=S_{IBD}\)
Do đó \(S_{IAE}=S_{IBD}\)
Mơn bn nhìu! Giải thêm giúp mk 1 bài toán nx nha nha nha nha
+ Từ 1 đến 9 có 9 số, mỗi số có 1 chữ số.
Vậy có : 1 x 9 = 9 ( chữ số )
+ Từ 10 đến 60 có : ( 60 - 10 ) : 1 + 1 = 51 ( số ), mỗi số có 2 chữ số.
Vậy có : 51 x 2 = 102 ( chữ số )
Vậy A có : 9 + 102 = 121 ( chữ số )
Đáp số : 121 chữ số
Gọi M ,N ,P lần lượt là trung điểm các cạnh AB ,AC , BC . Do đó \(S_{AMN}=S_{BMP}=S_{ANP}=\frac{1}{4}S_{ABC}\)
Theo nguyên lí di-rich-le thì trong chín điểm đề bài cho, có ít nhất ba điểm nằm trong tam giác AMN,BMP,ANP gọi 3 điểm đó là H , I , K
chẳng hạn 3 điểm H,I,K nằm trong ANP
\(\Rightarrow S_{HIK}< S_{ANP}=\frac{1}{4}S_{ABC}\)
Vậy sẽ có một tâm giác nhỏ hơn 1/4 diện tích tam giác ABC
uk