Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện \(\left\{{}\begin{matrix}cos5x\ne0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{10}+\dfrac{k\pi}{5}\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(tan5x=tanx\)
\(\Leftrightarrow5x=x+k\pi\)
\(\Leftrightarrow x=\dfrac{k\pi}{4}\)
ta có \(x\ne\dfrac{\pi}{10}+\dfrac{k\pi}{5}\) nếu chạy 1 tròn lượng giác vòng thì ta có \(x\ne\left\{\dfrac{\pi}{10};\dfrac{3\pi}{10};\dfrac{\pi}{2};\dfrac{7\pi}{10};\dfrac{9\pi}{10};\dfrac{11\pi}{10};\dfrac{13\pi}{10};\dfrac{3\pi}{2};\dfrac{17\pi}{10};\dfrac{19\pi}{10}\right\}\)
còn \(x\ne\dfrac{\pi}{2}+k\pi\) chạy 1 tròn lượng giác vòng thì ta có \(x\ne\left\{\dfrac{\pi}{2};\dfrac{3\pi}{2}\right\}\)
tử đó \(x\ne\left\{\dfrac{\pi}{10};\dfrac{3\pi}{10};\dfrac{\pi}{2};\dfrac{7\pi}{10};\dfrac{9\pi}{10};\dfrac{11\pi}{10};\dfrac{13\pi}{10};\dfrac{3\pi}{2};\dfrac{17\pi}{10};\dfrac{19\pi}{10}\right\}\)
mà ta có nghiệm \(\Leftrightarrow x=\dfrac{k\pi}{4}\)
thì \(x=\left\{0;\dfrac{\pi}{4};\dfrac{\pi}{2};\dfrac{3\pi}{4};\pi;\dfrac{5\pi}{4};\dfrac{3\pi}{2};\dfrac{7\pi}{4};\right\}\)
từ đó ta loại nghiệm \(x=\left\{\dfrac{\pi}{2};\dfrac{3\pi}{2}\right\}\)
vì k = 2 với k =4 thì nghiệm sẽ bị loại nên \(k\ne4m+2\)
a) Cách 1: Ta có:
y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.
Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.
Cách 2:
y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1
Do đó, y' = 0.
b) Cách 1:
Áp dụng công thức tính đạo hàm của hàm số hợp
(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u
Ta được
y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,
vì cos = cos = .
Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.
Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên
cos2 = cos2 '
cos2 = cos2 .
Do đó
y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.
Do đó y' = 0.
a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)
b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)
c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)
d) \(x=300^0+k540^0,k\in\mathbb{Z}\)
Bài 2. a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R {kπ, (k ∈ Z)}.
b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R {k2π, (k ∈ Z)}.
c) Hàm số đã cho không xác định khi và chỉ khi .
Hàm số đã cho có tập xác định là R {}.
d) Hàm số đã cho không xác định khi và chỉ khi
Hàm số đã cho có tập xác định là R {}.