Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x\ge0\)
Ta có :
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{x+\sqrt{x}}\right).\left(\frac{1}{\sqrt{x}+1}+\frac{1}{x-1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)\(.\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}-1+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(x-1\right)\sqrt{x}}{\sqrt{x}\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{1}{\sqrt{x}+1}\)
Vậy ta có
\(A=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}+19}{9}\)
\(=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{9}+\frac{18}{9}\)
\(=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{9}+2\)
Áp dụng BĐT Cauchy ta có
\(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{9}\ge2\sqrt{\frac{1}{\sqrt{x}+1}.\frac{\sqrt{x}+1}{9}}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{9}+2\ge\frac{8}{3}\)
\(\Leftrightarrow A\ge\frac{8}{3}\)
Dấu "=" xảy ra khi
\(\frac{1}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{9}\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=9\)
\(\Leftrightarrow\sqrt{x}+1=3\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
Vậy GTNN của A là \(\frac{8}{3}\) đạt được khi x = 4
a, \(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\) (ĐKXĐ: \(x\ne1,x\ge0\))
\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
b, \(A-\frac{1}{3}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}\)\(=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=-\frac{-\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}=-\frac{\left(\sqrt{x}+1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)
\(\Rightarrow A-\frac{1}{3}< 0\Leftrightarrow A< \frac{1}{3}\)
c, ĐKXĐ: \(x\ge0,x\ne1\)
Ta có: x = \(19-8\sqrt{3}\)(TMĐK) \(\Leftrightarrow\sqrt{x}=\sqrt{19-8\sqrt{3}}\Leftrightarrow\sqrt{x}=\sqrt{\left(4-\sqrt{3}\right)^2}\Leftrightarrow\sqrt{x}=4-\sqrt{3}\)
Thay \(\sqrt{x}=4-\sqrt{3}\)vào A ta có:
\(A=\frac{4-\sqrt{3}}{\left(4-\sqrt{3}\right)^2+4-\sqrt{3}+1}=\frac{4-\sqrt{3}}{19-8\sqrt{3}+4-\sqrt{3}+1}=\frac{4-\sqrt{3}}{24-9\sqrt{3}}\)
Vậy với \(x=19-8\sqrt{3}\)thì \(A=\frac{4-\sqrt{3}}{24-9\sqrt{3}}\)
ta có:\(\frac{x-2\sqrt{x}+1}{x-\sqrt{x}+1}=\frac{1}{2}\)
\(\Rightarrow x-3\sqrt{x}+1=0\)
\(\Rightarrow\hept{\begin{cases}x+1=3\sqrt{x}\\x-3\sqrt{x}=-1\end{cases}}\)
lại có \(B=\frac{3x\sqrt{x}+10x+19}{x^2+7x+15}\)
\(=\frac{3x\sqrt{x}-9x+19x+19}{x^2-9x+16x+15}\)
\(=\frac{3\sqrt{x}\left(x-3\sqrt{x}\right)+19\left(x+1\right)}{\left(x+3\sqrt{x}\right)\left(x-3\sqrt{x}\right)+16x+15}\)
\(=\frac{-3\sqrt{x}+19\times3\sqrt{x}}{-1\times\left(x+3\sqrt{x}\right)+16x+15}\)
\(=\frac{57\sqrt{x}-3\sqrt{x}}{15x+15-3\sqrt{x}}\)
\(=\frac{54\sqrt{x}}{15\left(x+1\right)-3\sqrt{x}}\)
\(=\frac{54\sqrt{x}}{45\sqrt{x}-3\sqrt{x}}\)
\(=\frac{54\sqrt{x}}{42\sqrt{x}}=\frac{27}{21}\)
Bài 5:Dự đoán dấu = xảy ra khi a = 2; b=3;c=4. Ta có hướng giải như sau:
\(A=\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)+\frac{a}{4}+\frac{b}{2}+\frac{3}{4}c\)
Áp dụng BĐT AM-GM,ta được:
\(A\ge2\sqrt{\frac{3}{4}a.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{1}{4}c.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{1}{4}.20=13\)
Dấu "=" xảy ra khi a = 2; b=3;c=4
VẬy A min = 13 khi a = 2; b=3;c=4
Bài 1: Bạn xem lại đề, với điều kiện như đã cho thì A có max chứ không có min
Bài 2:
\(A=(a+1)^2+\left(\frac{a^2}{a+1}+2\right)^2=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2\)
\(=(a+1)^2+\left(\frac{(a+1)^2+1}{a+1}\right)^2=(a+1)^2+\left(a+1+\frac{1}{a+1}\right)^2\)
\(=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\) (đặt \(t=a+1)\)
Áp dụng BĐT AM-GM:
\(2t^2+\frac{1}{t^2}\geq 2\sqrt{2}\Rightarrow A\geq 2\sqrt{2}+2\)
Vậy $A_{\min}=2\sqrt{2}+2$. Dấu "=" xảy ra khi \(a=\pm \frac{1}{\sqrt[4]{2}}-1\)
a: \(P=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1+\sqrt{x}}{x+1}\)
\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
Câu 1: Điều kiện xác định
a/ \(\hept{\begin{cases}x\ge0\\x-9\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}}\)
b/ \(Q=\frac{\sqrt{x}-1}{x}+\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(\hept{\begin{cases}x>0\\\sqrt{x}+1\ne0\end{cases}\Rightarrow x>0}\)
c/ \(\hept{\begin{cases}x\ge0\\x-5\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne5\end{cases}}}\)
Câu 2:
a/ ĐKXĐ: \(\hept{\begin{cases}x>0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}}\)
b/ \(P=\left(1+\frac{1}{\sqrt{x}-1}\right)-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c/ Thay x = 25 vào P ta được: \(P=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)
d/ Ta có: \(P=\frac{\sqrt{5+2\sqrt{6}}+1}{\sqrt{5+2\sqrt{6}}}=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+1}{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}=\frac{\sqrt{3}+\sqrt{2}+1}{\sqrt{3}+\sqrt{2}}\)
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
bài này chỉ ngồi mò được điểm rơi là xong
Áp dụng bất đẳng thức AM-GM có ;
\(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}+19}{9}=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{9}+\frac{18}{9}\ge2\sqrt{\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right).9}}+2\)
\(=2.\sqrt{\frac{1}{9}}+2=2.\frac{1}{3}+2=\frac{2}{3}+2=\frac{8}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x=4\)
Vậy Min A = 8/3 khi x = 4
bài này mình không kiếm được điểm rơi nên mình đoán bừa nhé , nếu sai thì nhờ cao thủ nào đó đến cứu =))))))))